Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Doğrulanması

Fotovoltaik hücreler, güneşten gelen elektromanyetik enerjiyi elektrik enerjisine dönüştüren enerji dönüşümsistemleridir. Bu çalışmada 40°42’52.2”K, 31°31’29.8”D koordinatlarında kurulu bulunan 36 hücreli polikristaltür bir güneş paneli, çeşitli sensörler ve veri kaydedici cihazlar kullanılarak hazırlanan deney düzeneğitemelinde; i) güneş ışınım şiddetinin fotovoltaik panel üzerindeki etkisinin incelenmesi, ii) fotovoltaik panelinakım-voltaj (I-V) karakteristiğinin incelenmesi, iii) fotovoltaik panelden elde edilen akım-voltaj eğrilerininliteratürdeki modeller ile karşılaştırılması ve doğrulanması amaçlanmıştır. Söz konusu fotovoltaik panel içinfarklı güneş ışınım şiddetinde ve farklı sıcaklıklarda ölçülen I-V karakteristikleri; 4-değişkenli, 5-değişkenli,geliştirilmiş 4-değişkenli ve 2-diyotlu model olmak üzere toplam 4 farklı analitik model kullanılarakmodellenmiş ve doğrulanmıştır. I-V ilişkisini tanımlayan analitik denklemler Visual Basic programlama dilikullanılarak çözümlenmiştir. Modellerden elde edilen sonuçlar ile ölçülen değerler arasındaki karşılaştırma R² veRMSE olmak üzere 2 istatistiksel parametre üzerinden gerçekleştirilmiştir. Farklı ışınım değerleri ve sıcaklıklariçin modellerden elde edilen sonuçlar ile ölçüm değerleri karşılaştırıldığında ?2 değerlerinin %95,86 ile %99,86arasında, RMSE değerlerinin ise 0,093 ile 0,861 değiştiği gözlenmektedir. Elde edilen sonuçların istatistikselanalizi; bu çalışma kapsamında kullanılan 4 farklı model içerisinde, geliştirilmiş 4-değişkenli modelin diğermodellere göre daha başarılı tahmin sonuçlarına yol açtığını göstermektedir.

Analytical Modelling and Experimental Validation of the I-V Characteristics of a Polycrystalline Type of Photovoltaic Panel

Photovoltaic cells are energy conversion systems that convert the electromagnetic energy coming from the sun to electrical energy. In this study, based on an experimental facility, incorporating a polycrystalline photovoltaic panel made up of 36 cells, various sensors and a data logger device, located at the coordinates of 40°42’52.2”N, 31°31’29.8”E, the followings are aimed; i) investigation of the effect of solar radiation intensity on the photovoltaic panel, ii) investigation of the current-voltage characteristics of the photovoltaic panel, and iii) comparison of the current-voltage curves measured from the photovoltaic panel with those obtained from the models available in the literature and thus validation. The current-voltage characteristics of the photovoltaic panel measured at different solar radiation and temperature levels have presently been modelled and validated using a total of 4 different analytical models namely, 4-parameter, 5-parameter, improved 4-parameter and 2- diode models. The equations defining the current-voltage relationship have been solved using Visual Basic programming language. The comparison between the results obtained from the solutions of the models and those measured has been made based on the statistical parameters of R² and RMSE. When the results obtained from the models and the measurements for various solar radiation and temperature values are compared, it is seen that ? 2 values vary from %95,86 to %99,86 and the RMSE values from 0,093 to 0,861. The statistical analysis of the results obtained has shown that amongst the 4 different models used in the present thesis, the improved 4- parameter model leads to better estimation results than the other models used.

___

  • [1] British Petroleum, “BP statistical review of world energy”, 2019. [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2019-full-report.pdf
  • [2] International Energy Agency, “Key World Energy Statistics”, 2019. [Online]. Available: https://webstore.iea.org/key-world-energy-statistics-2019.
  • [3] TC Enerji ve Tabii Kaynaklar Bakanlığı, “Dünya ve Türkiye Enerji ve Tabii Kaynaklar Görünümü 2017”, 2017. [Online]. Available: https://www.enerji.gov.tr/tr-TR/Enerji-ve-Tabii-KaynaklarGorunumleri.
  • [4] Solargis, 2018. [Online]. Available: https://solargis.info/purchase/#tl=satellite&ot= CLIMDATA.
  • [5] M. A. Green, Solar cells: operating principles, technology, and system applications. New York, NY, USA: Prentice Hall, 1981.
  • [6] İ. Altaş, “Fotovoltaj güneş pilleri: yapısal özellikleri ve karakteristikleri,”, Enerji, Elektrik, Elektromekanik-3e, vol. 47, pp. 66-71, 1998.
  • [7] H. S. Rauschenbach, Solar cell array design handbook: the principles and technology of photovoltaic energy conversion. Netherlands, Springer Science, 2012.
  • [8] C. Waldauf, P. Schilinsky, J. Hauch and C. J. Brabec, “Material and device concepts for organic photovoltaics: towards competitive efficiencies”, Thin Solid Films, vol. 451, pp. 503-507, 2004.
  • [9] NREL, “Champion photovoltaic module efficiency chart”, 2019. [Online]. Available: https://www.nrel.gov/pv/module-efficiency.html, 2019.
  • [10] V. J. Chin, Z.Salam and K.Ishaque, “Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review”, Applied Energy, vol. 154, pp. 500-519, 2015.
  • [11] V. Khanna, B. Das, D. Bisht and P. Singh, “A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm”, Renewable Energy, vol. 78, pp. 105-113, 2015.
  • [12] V. L.Brano, A. Orioli, G. Ciulla and A. Di Gangi, “An improved five-parameter model for photovoltaic modules”, Solar Energy Materials and Solar Cells, vol. 94(8) , pp. 1358-1370, 2010.
  • [13] N. A. Rahim, H. W. Ping and J. Selvaraj, “Photovoltaic module modeling using Simulink/Matlab”, Procedia Environmental Sciences, vol. 17, pp. 537-546, 2013.
  • [14] B. Marion, S. Rummel and A. Anderberg, “Current–voltage curve translation by bilinear interpolation”, Progress in Photovoltaics: Research and Applications, vol. 12(8): 593-607, 2004.
  • [15] Y. Hishikawa, Y. Imura, T. Oshiro. “Irradiance-dependence and translation of the IV characteristics of crystalline silicon solar cells”, presented at the 28th IEEE PV Specialists Conference, Anchorage, Alaska, September 15-20, 2000.
  • [16] W. De Soto, S. Klein and W. Beckman, “Improvement and validation of a model for photovoltaic array performance”, Solar Energy, vol. 80(1) , pp. 78-88, 2006.
  • [17] A. Toprak, H. Ş. Kılıç, A. Toprak and A. Kepçeoğlu, “Güneş Pilinin Tek Diyot Rs Model Parametrelerinin Hesaplanması ve I-V İle PV Karakteristiklerinin İncelenmesi”, Selçuk Üniversitesi Sosyal ve Teknik Araştırmalar Dergisi vol. 12, pp. 13-22, 2016.
  • [18] H. R. Ozcalık, S. Yılmaz and E. Kılıc, “Güneş Pilinin Bir Diyotlu Eşdeğer Devre Yardımıyla Matematiksel Modelinin Çıkartılması ve Parametrelerinin İncelenmesi”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 16(1) , pp. 1-10, 2013.
  • [19] W. Xiao, W. G. Dunford and A. Capel, “A novel modeling method for photovoltaic cells,” presented at the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, June 20-25, 2004.
  • [20] N. N. Ulapane, C. H. Dhanapala, S. M. Wickramasinghe, S. G. Abeyratne, N. Rathnayake and P. J. Binduhewa, “Extraction of parameters for simulating photovoltaic panels,” presented at the 6th IEEE International Conference on Industrial and Information Systems (ICIIS), Kandy, Sri Lanka, August 16- 19, 2011.
  • [21] R. Chenni, M. Makhlouf, T. Kerbache and A. Bouzid, “A detailed modeling method for photovoltaic cells”, Energy, vol. 32(9) , pp. 1724-1730, 2007.
  • [22] Q. Kou, S. Klein and W. Beckman, “A method for estimating the long-term performance of directcoupled PV pumping systems”, Solar Energy, vol. 64(1-3), pp. 33-40, 1998.
  • [23] T. Easwarakhanthan, J. Bottin, I. Bouhouch and C. Boutrit, “Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers”, International Journal of Solar Energy, vol. 4(1) , pp. 1-12, 1986.
  • [24] A. Ortiz-Conde, Y. Ma, J. Thomson, E. Santos, J. Liou, F. G. Sánchez., M. Lei, J. Finol and P. Layman, “Direct extraction of semiconductor device parameters using lateral optimization method”, Solid-State Electronics, vol. 43(4), pp. 845-848, 1999.
  • [25] P. Saha, S. Kumar, S. K. Nayak and H. S.Sahu, “Parameter estimation of double diode photovoltaic module,” presented at the 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN 2015), Arunachal Pradesh, India, January 10-11, 2015.
  • [26] K. El-Naggar, M. Al Rashidi, M. Al Hajri and A. Al-Othman, “Simulated annealing algorithm for photovoltaic parameters identification”, Solar Energy, vol. 86(1), pp. 266-274, 2012.
  • [27] A.Sellami and M. Bouaïcha, “Application of the genetic algorithms for identifying the electrical parameters of PV solar generators” in Solar cells-silicon wafer-based technologies: InTech, L. A. Kosyachenko, 2011.
  • [28] N. Moldovan, R. Picos and E. Garcia-Moreno, “Parameter extraction of a solar cell compact model usign genetic algorithms,”presented at the Electron Devices, 2009, Santiago de Compastela, Spain, Feb. 11-13, 2009.
  • [29] W. T. Da Costa, J. F. Fardin, D. S. Simonetti and L. Neto , “Identification of photovoltaic model parameters by differential evolution”, presented at the IEEE International Conference on Industrial Technology (ICIT), Vina del Mar, Chile, March 14-17, 2010.
  • [30] W. Gong and Z. Cai, “Parameter extraction of solar cell models using repaired adaptive differential evolution”, Solar Energy, vol. 94, pp. 209-220, 2013.
  • [31] M. Ye, X. Wang and Y. Xu, “Parameter extraction of solar cells using particle swarm optimization”, Journal of Applied Physics, vol. 105(9), pp. 094502, 2009.
  • [32] L. Sandrolini, M. Artioli and U. Reggiani, “Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis”, Applied Energy, vol. 87(2), pp. 442- 451, 2010.
  • [33] J. Ma, T. Ting, K. L. Man, N. Zhang, S-U. Guan and P. W.Wong, “Parameter estimation of photovoltaic models via cuckoo search”, Journal of Applied Mathematics, vol. 2013, pp. 1-8, 2013.
  • [34] N. Rajasekar, N. K.Kumar and R. Venugopalan, “Bacterial foraging algorithm based solar PV parameter estimation”, Solar Energy, vol. 97, pp. 255-265, 2013.
  • [35] A. Askarzadeh and A. Rezazadeh, “Parameter identification for solar cell models using harmony search-based algorithms”, Solar Energy, vol. 86(11), pp. 3241-3249, 2012.
  • [36] M. Al Hajri, K. El-Naggar, M. Al Rashidi and A. Al-Othman, “Optimal extraction of solar cell parameters using pattern search”, Renewable energy, vol. 44, pp. 238-245, 2012.
  • [37] M. Al Rashidi, M. Al Hajri, K. El-Naggar and A. Al-Othman, “A new estimation approach for determining the I–V characteristics of solar cells”, Solar Energy, vol. 85(7), pp. 1543-1550, 2011.
  • [38] A. Askarzadeh, A.Rezazadeh, “Artificial bee swarm optimization algorithm for parameters identification of solar cell models”, Applied energy, vol. 102, pp. 943-949, 2013.
  • [39] A. Askarzadeh and A. Rezazadeh, “Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach”, Solar Energy, vol. 90, pp. 123-133,
  • [40] A. N. Celik and N. Acikgoz, “Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models”, Applied energy, vol. 84(1), pp. 1-15, 2007.
  • [41] M. De Blas, J. Torres, E. Prieto and A. Garcia, “Selecting a suitable model for characterizing photovoltaic devices”, Renewable Energy, vol. 25(3), pp. 371-380, 2002.
  • [42] R. Khezzar, M. Zereg and A. Khezzar, “Modeling improvement of the four parameter model for photovoltaic modules”, Solar Energy, vol. 110, pp. 452-462, 2014.
  • [43] W. Zhou, H. Yang and Z.Fang, “A novel model for photovoltaic array performance prediction”, Applied Energy, vol. 84(12), pp.1187-1198, 2007.
  • [44] K. Ishaque, Z.Salam and H. Taheri, “Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model”, Simulation Modelling Practice and Theory, vol. 19(7), pp. 1613-1626, 2011.
  • [45] J. A. Duffie and W. A. Beckman. Solar Engineering of Thermal Processes, 4th ed. New York, NY, USA: John Wiley & Sons. 2013.
  • [46] D. N. Gujarati, D. C. Porter, Ü Şenesen and Günlük-Şenesen G. Temel Ekonometri, Literatür Yayıncılık, 2012.
  • [47] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Climate Research, vol. 30, no.1, pp. 79-82, 2005.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü