Nokta Direnç Kaynağı ile Birleştirilen DP1200 Çeliğinin Dayanımı Üzerinde Kaynak Parametrelerinin Etkisinin İstatistiksel Analizi

Bu çalışmada nokta direnç kaynaklı DP1200 çeliğinin ideal çekme makaslama dayanımını elde etmek için farklı kaynak akımı ve elektrot basıncı parametrelerinin optimizasyonuna odaklanılmıştır. Kaynak prosesleri 5 kA ve 7 kA kaynak akımlarında, 2-6 bar elektrot basınçlarında gerçekleştirilmiştir. Kaynak parametrelerinin çekme makaslama dayanımı üzerindeki etkileri çoklu doğrusal regresyon analizi ile incelenmiştir. Yapılan bu analiz ile elde edilen korelasyon tablosu ve ANOVA analiz değerleri yorumlanmıştır. Kaynak parametrelerinin önem derecesi belirlenerek, çekme makaslama dayanımı üzerindeki etkileri karşılaştırılmış ve belirlenen etki değerlerine göre çoklu doğrusal regresyon modeli oluşturulmuştur. Deneysel sonuçlar çekme makaslama dayanımını etkileyen en önemli değişkenin kaynak akımı olduğunu göstermiştir. Kaynak akımı arttıkça çekme makaslama dayanımı artmıştır. Özellikle yüksek kaynak akımı değerinde, elektrot basıncının kritik değerine kadar çekme makaslama dayanımının arttığı, fakat kritik değerinin üzerinde dayanımda düşüş olduğu görülmüştür. Sıçramanın çekme makaslama dayanımı üzerinde negatif etkiye sahip olduğu gözlenmiştir.

Statistical Analysis of the Effect of Welding Parameters on the Strength of DP1200 Steel Combined with Resistance Spot Welding

In this study, focused on optimization of different welding current and electrode pressure parameters to obtain the ideal tensile shear strength of resistance spot welded DP1200 steel. Welding processes were carried out at 5 kA and 7 kA welding currents and 2-6 bar electrode pressures. The effects of welding parameters on tensile shear strength were investigated by multiple linear regression analysis. The correlation table and ANOVA analysis values obtained with this analysis were interpreted. The importance of the welding parameters was determined, their effects on the tensile shear strength were compared and a multiple linear regression model was created according to the determined effect values. Experimental results showed that welding current is the most important variable affecting tensile shear strength. As the welding current increased, the tensile shear strength increased. Especially at high welding current values, it was observed that the tensile shear strength increased until the critical value of the electrode pressure, but there was a decrease in the strength above the critical value. It was observed that expulsion has a negative effect on tensile shear strength.

___

  • [1] R. Roth, J. Clark, and A. Kelkar, “Automobile bodies: can aluminum be an economical alternative to steel,” The Journal of The Minerals, Metals & Materials Society, c. 53, s. 8, ss. 28–32, 2001.
  • [2] C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design,” Annual Review of Materials Research, c. 45, s. 1, ss. 391–431, 2015.
  • [3] M. Pouranvari, “Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities,” Materials Science and Technology, c. 33, s. 15, ss. 1705–1712, 2017.
  • [4] B. K. Zuidema, “Bridging the design–manufacturing–materials data gap: material properties for optimum design and manufacturing performance in light vehicle steel-intensive body structures,” The Journal of The Minerals, Metals & Materials Society, c. 64, s. 9, ss. 1039–1047, 2012.
  • [5] M. Elitaş ve B. Demir, “Elektrot basıncının nokta direnç kaynaklı DP600 çeliğinin mikroyapı ve sertliğine etkileri,” Nevşehir Bilim ve Teknoloji Dergisi, c. 7, s. 2, ss. 194-205, 2018.
  • [6] M. I. Khan, M. L. Kuntz, E. Biro, and Y. Zhou, “Microstructure and mechanical properties of resistance spot welded advanced high strength steels,” Materials Transactions, c. 49, s. 7, ss. 1629-1637, 2008.
  • [7] X. Long, and S. K. Khanna, “Fatigue properties and failure characterization of spot welded high strength steel sheet,” International Journal of Fatigue, c. 29, s. 5, ss. 879–886, 2007.
  • [8] C. Ma, D. L. Chen, S. D. Bhole, G. Boudreau, A. Lee, and E. Biro, “Microstructure and fracture characteristics of spot-welded DP600 steel,” Materials Science and Engineering: A, c. 485, s. 1-2, ss. 334–346, 2008.
  • [9] C. Lindgren, J. O. Sperle, and M. Jonsson, “Fatigue strength of spot welded beams in high strength steels,” Welding in the World, c. 37, s. 1, ss. 90–104, 1996.
  • [10] O. Holovenko, M. G. Ienco, E. Pastore, M. R. Pinasco, P. Matteis, G. Scavino, and D. Firrao, “Microstructural and mechanical characterization of welded joints on innovative high-strength steels,” La Metallurgia Italiana, c. 105, s. 3, ss. 3-12, 2013.
  • [11] T. K. Pal, and K. Bhowmick, “Resistance spot welding characteristics and high cycle fatigue behavior of DP 780 steel sheet,” Journal of Materials Engineering and Performance, c. 21, s. 2, ss. 280–285, 2012.
  • [12] M. Elitas, and B. Demir, “Residual stress evaluation during RSW of DP600 sheet steel,” Materials Testing, c. 62, s. 9, ss. 888-890, 2020.
  • [13] A. Ghaheri, A. Shafyei, and M. Honarmand, “Effects of inter-critical temperatures on martensite morphology, volume fraction and mechanical properties of dual-phase steels obtained from direct and continuous annealing cycles,” Materials & Design (1980-2015), c. 62, ss. 305–319, 2014.
  • [14] N. Farabi, D. L. Chen, and Y. Zhou, “Fatigue properties of laser welded dual-phase steel joints,” Procedia Engineering, c. 2, s. 1, ss. 835–843, 2010.
  • [15] M. Sarwar, and R. Priestner, “Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel,” Journal of Materials Science, c. 31, s. 8, ss. 2091–2095, 1996.
  • [16] M. A. Erden, “The effect of the sintering temperature and addition of niobium and vanadium on the microstructure and mechanical properties of microalloyed PM steels,” Metals, c. 7, s. 9, ss. 329, 2017.
  • [17] F. Hayat, B. Demir, and M. Acarer, “Tensile shear stress and microstructure of low carbon dual phase Mn-Ni steels after spot resistance welding,” Metal Science and Heat Treatment, c. 49, s. 9-10, ss. 484-489, 2007.
  • [18] M. Pouranvari, and S. P. H. Marashi, “Critical review of automotive steels spot welding: process, structure and properties,” Science and Technology of welding and joining, c. 18, s. 5, ss. 361–403, 2013.
  • [19] N. J. Den Uijl, “Resistance spot welding of advanced high strength steels,” Ph.D. dissertation, Department of Materials Science and Engineering, Delft University, Delft, Netherland, 2015.
  • [20] P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi, “Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels,” Materials science and engineering: A, c. 480, s. 1-2, ss. 175–180, 2008.
  • [21] M. Pouranvari, A. Abedi, P. Marashi, and M. Goodarzi, “Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds,” Science and Technology of Welding and Joining, c. 13, s. 1, ss. 39–43, 2008.
  • [22] M. Pouranvari, S. P. H. Marashi, and D. S. Safanama, “Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation,” Materials Science and Engineering: A, c. 528, s. 29-30, ss. 8344–8352, 2011.
  • [23] M. Eshraghi, M. A. Tschopp, M. A. Zaeem, and S. D. Felicelli, “Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel: a parametric study using thermomechanically-coupled finite element analysis,” Materials & Design (1980-2015), c. 56, ss. 387–397, 2014.
  • [24] A. G. Thakur, and V. M. Nandedkar, “Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method,” Arabian Journal for Science and Engineering, c. 39, s. 2, ss. 1171–1176, 2014.
  • [25] U. Esme, “Application of taguchi method for the optimization of resistance spot welding process,” The Arabian Journal for Science and Engineering, c. 34, s. 2, ss. 519-529, 2009.
  • [26] X. Q. Zhang, G. L. Chen, and Y. S. Zhang, “Characteristics of electrode wear in resistance spot welding dual-phase steels,” Materials & Design, c. 29, s. 1, ss. 279–283, 2008.
  • [27] H. Aydin, “The mechanical properties of dissimilar resistance spot-welded DP600–DP1000 steel joints for automotive applications,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, c. 229, s. 5, ss. 599–610, 2015.
  • [28] X. Luo, J. Ren, D. Li, Y. Qin, and P. Xu, “Macro characteristics of dissimilar high strength steel resistance spot welding joint,” The International Journal of Advanced Manufacturing Technology, c. 87, s. 1-4, ss. 1105–1113, 2016.
  • [29] A. G. Thakur, T. E. Rao, M. S. Mukhedkar, and V. M. Nandedkar, “Application of Taguchi method for resistance spot welding of galvanized steel,” ARPN Journal of Engineering and Applied Sciences, c. 5, s. 11, ss. 22–26, 2010.
  • [30] T. Ersöz, M. T. Elitaş ve F. Ersöz, “Oecd ülkelerinde biyokütle enerji üretiminin çok boyutlu ölçekleme analizi ile incelenmesi,” TÜBAV Bilim Dergisi, c. 8, s. 3, ss. 1–11, 2015.
  • [31] I. Ciftci, and H. Gokce, “Optimization of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi method,” Journal of the Faculty of Engineering and Architecture of Gazi University, c. 34, s. 1, ss. 201–213, 2019.
  • [32] M. Elitas, and B. Demir, “The effects of the welding parameters on tensile properties of RSW junctions of DP1000 sheet steel,” Engineering, Technology & Applied Science Research, c. 8, s. 4, ss. 3116–3120, 2018.
  • [33] S. Fukumoto, K. Fujiwara, S. Toji, and A. Yamamoto, “Small-scale resistance spot welding of austenitic stainless steels,” Materials Science and Engineering: A, c. 492, s. 1-2, ss. 243–249, 2008.
  • [34] D. Q. Sun, B. Lang, D. X. Sun, and J. B. Li, “Microstructures and mechanical properties of resistance spot welded magnesium alloy joints,” Materials Science and Engineering: A, c. 460-461, ss. 494–498, 2007.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü