Femur Transvers Kırıklarında Plak ve İntramedüller Çivi Kullanımının Mekanik Yönden Değerlendirilmesi

Femur ve tibia gibi uzun kemikler darbe, aşırı yükleme gibi sebeplerden dolayı şaft bölgelerinden kırılabilmektedir. Bu kırıkların iyileşebilmesi için kırık bölgesinin stabil bir şekilde sabitlenmesi gerekir. Bu sabitleme için plaklar ve intramedüler çiviler sıklıkla kullanılmaktadır. Ancak mekanik yönden bu iki implantın hangisinin daha başarılı olduğu bilinmemektedir. Bu çalışmada, femur şaft kırıklarında kullanılan plak ve intramedüler çivi kullanımının mekanik açıdan değerlendirilmesi yapılması amaçlanmıştır. Yöntem olarak, kemik ve implantlar üzerindeki gerilmeleri incelemede sıklıkla tercih edilen sonlu elemanlar yöntemi kullanılmıştır. Kemik ve implant modelleri oluşturulmuş ve bilgisayar ortamında bu modeller ameliyata uygun olarak birleştirilmiştir. Femur başına 750 N kuvvet uygulanmış ve distal femurdan sabitlenmiştir. Toplamda sağlam femur modeli de olmak üzere üç model oluşturulmuştur. Referans olarak sağlam femur modeli üzerinde oluşan gerinim dağılımları dikkate alınmıştır. Sonuçları değerlendirirken femur üzerinde oluşan gerinim değerleri ve implantlar üzerinde oluşan maksimum von Mises gerilme değerleri incelenmiştir. Ayrıca kırık hattında meydana gelen gerilme değerleri de dikkate alınmıştır. Sonuç olarak, femur şaft kırıklarında intramedüller çivi kullanımının stress kalkanı açısından daha başarılı bulunmuştur.

Mechanical Evaluation of the Use of Plate and Intramedullary Nails in Femur Transverse Fractures

Long bones such as the femur and tibia can be broken from the shaft region due to impact, oandrload, etc.. The fracture region has to be fixed stably in order to heal the fracture. However, it is not known which of these two implants is more successful mechanically. Plates and intramedullary nails are frequently used for this fixation. The aim of this study was to evaluate the use of plates and intramedullary nails used in femur shaft fractures mechanically. The finite element method, which is frequently preferred, has been used as a method to examine the stresses on the modelled bone and implants. The bone and implants were created and combined with each other according to surgical procedure. 750 N force was applied to the femur head and the distal end of the femur was fixed. Three finite element models were created, including the intact femur model. The strain distributions on the femur intact femur were taken as reference. The strain values on the femur and the maximum von Mises stress values on the implants were examined to evaluate the results. In addition, the stress values in the fracture line were also taken into consideration to evaluate the results. In conclusion, the use of intramedullary nails in femur shaft fractures was found to be more successful in terms of stress shielding.

___

  • [1]P. S. R. S. Maharaj, R. Maheswaran and A. Vasanthanathan, “Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates,” Procedia Eng., vol. 64, pp. 1242–1251, 2013.
  • [2]B. Ettinger, D. B. Burr and R. O. Ritchie, “Proposed pathogenesis for atypical femoral fractures: Lessons from materials research,” Bone, vol. 55, no. 2, pp. 495–500, 2013.
  • [3]T. Çelik, “Biomechanical evaluation of the screw preload values used in the plate placement for bone fractures,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 235, no. 2, pp. 141–147, Oct. 2020.
  • [4]E. Köseoğlu, K. Durak, M. S. Bilgen, A. Küçükalp and S. Bayyurt, “Comparison of two biological internal fixation techniques in the treatment of adult femur shaft fractures (plate-screws and locked intramedullary nail),” Ulus Travma Acil Cerrahi Dergisi, vol. 17, no. 2, pp. 159–165, 2011.
  • [5]M. Wild , S. Gehrmann, P. Jungbluth, Mohssen Hakimi, S. Thelen, M. Betsch, J. Windolf and J.Windolf, “Treatment strategies for intramedullary nailing of femoral shaft fractures.,” Orthopedics, vol. 33, no. 10, pp. 726, 2010.
  • [6]R. Brumback and W. Virkus, “Intramedullary Nailing of the Femur: Reamed Versus Nonreamed,” J. Am. Acad. Orthop. Surg., vol. 8, pp. 83–90, 2000.
  • [7]J. L. M. van Niekerk and F. J. Schoots, “Femoral shaft fractures treated with plate fixation and interlocked nailing: a comparative retrospective study,” Injury, vol. 23, no. 4, pp. 219–222, 1992.
  • [8]J. D. Lindsey and J. C. Krieg, “Femoral malrotation following intramedullary nail fixation.,” J. Am. Acad. Orthop. Surg., vol. 19, no. 1, pp. 17–26, 2011.
  • [9]C. J. Hernandez, G. S. Beaupré, T. S. Keller and D. R. Carter, “The influence of bone volume fraction and ash fraction on bone strength and modulus,” Bone, vol. 29, no. 1, pp. 74–78, 2001.
  • [10]L. Necas, M. Hrubina, Z. Cibula, J. B. Jr., S. Krivanek and Z. Horak, “Fatigue failure of the sliding hip screw – clinical and biomechanical analysis,” Comput. Methods Biomech. Biomed. Engin., vol. 20, no. 12, pp. 1364–1372, 2017.
  • [11]S. Tanrıkulu ve E. Gönen, “Kırık iyileşmesi, ” TOTBID Dergisi, c. 16, s. 6 , ss. 456-475, 2017.
  • [12]M. Charles-Harris, D. Lacroix, I. Proubasta and J. A. Planell, “Intramedullary Nails Vs Osteosynthesis Plates for Femoral Fracture Stabilization: A Finite Element Analysis,” J. Appl. Biomater. Biomech., vol. 3, no. 3, pp. 157–167, Sep. 2005.
  • [13]K. Dai, “Rational utilization of the stress shielding effect of implants,” in Biomechanics ad Biomaterials in Orthopedics, London: Springer London, 2004, böl. 2, pp. 208–215.
  • [14]P. Slätis, E. Karaharju, T. Holmström, J. Ahonen and P. Paavolainen, “Structural changes in intact tubular bone after application of rigid plates with and without compression,” J. Bone Joint Surg. Am., vol. 60, no. 4, pp. 516—522, 1978.
  • [15]H. K. Uhthoff and Z. F. Jaworski, “Bone loss in response to long-term immobilisation,” J. Bone Joint Surg. Br., vol. 60, no. 3, pp. 420–429, 1978.
  • [16]E. J. Cheal, W. C. Hayes, A. A. White and S. M. Perren, “Stress analysis of a simplified compression plate fixation system for fractured bones,” Comput. Struct., vol. 17, no. 5, pp. 845–855, 1983.
  • [17]R. R. Tarr and D. A. Wiss, “The mechanics and biology of intramedullary fracture fixation,” Clin. Orthop. Relat. Res., no. 212, pp. 10–17, 1986.
  • [18]AO Foundation Surgery Reference., (2021, Mayıs 1). Treatment of Simple, transverse, middle 1/3 fractures [Online]. Available: https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/femoralshaft/simple-transverse-middle-1-3-fractures.
  • [19]J. Y. Rho, M. C. Hobatho and R. B. Ashman, “Relations of mechanical properties to density and CT numbers in human bone,” Med. Eng. Phys., vol. 17, no. 5, pp. 347–355, 1995.
  • [20]J.-T. Hsu, C.-H. Chang, H.-L. Huang, M. E. Zobitz, W.-P. Chen, K.-A. Lai and K.-A. An , “The number of screws, bone quality, and friction coefficient affect acetabular cup stability,” Med. Eng. Phys., vol. 29, no. 10, pp. 1089–1095, 2007.
  • [21]S. Sowmianarayanan, A. Chandrasekaran and R. K. Kumar, “Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants--a comparative study.,” Proc. Inst. Mech. Eng. Part H, J. Eng. Med., vol. 222, no. 1, pp. 117–127, 2008.
  • [22] J. S. Shockey, J. A. von Fraunhofer and D. Seligson, “A measurement of the coefficient of static friction of human long bones,” Surf. Technol., vol. 25, no. 2, pp. 167–173, 1985.
  • [23]T. Çelik and Y. Kişioğlu, “Evaluation of new hip prosthesis design with finite element analysis,” Australas. Phys. Eng. Sci. Med., vol. 42, no. 4, pp. 1033–1038, 2019.
  • [24]G. Wang, T. Pan, X. Peng and J. Wang, “A new intramedullary nailing device for the treatment of femoral shaft fractures: A biomechanical study,” Clin. Biomech., vol. 23, no. 3, pp. 305–312, 2008.
  • [25]S. Samiezadeh, P. Tavakkoli Avval, Z. Fawaz and H. Bougherara, “Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study,” Clin. Biomech., vol. 29, no. 7, pp. 803–810, 2014.
  • [26]B. Izzawati, R. Daud, M. Afendi, M. S. A. Majid, N. A. M. Zain and Y. Bajuri, “Stress analysis of implant-bone fixation at different fracture angle,” J. Phys. Conf. Ser., vol. 908, pp. 12019, 2017.
  • [27] İ. Ünal, “Femur Gövde Kırığı Cerrahisinde Kullanılan Plak Tasarımının Sonlu Elemanlar Yöntemi İle Analizi, ” Yüksek Lisans Tezi, Türkiye, Biyomedikal Bilimler ve Mühendislik Bölümü , İzmir Demokrasi Üniversitesi, İzmir, Türkiye 2019.
  • [28]T. Çelik, “Ortopedik İmplantlarda Mekanik Kararlılığın Analizi, ” Doktora Tezi, Biyomedikal Mühendisliği Bölümü, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2018.
  • [29]A. Z. Senalp, O. Kayabasi and H. Kurtaran, “Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis,” Mater. Des., vol. 28, no. 5, pp. 1577–1583, 2007.
  • [30]N. H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas and R. U. Newton, “Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.,” J. Musculoskelet. Neuronal Interact., vol. 17, no. 3, pp. 114–139, 2017.
  • [31]A. Aliakbar, I. Witwit and A. A. H. Al-Algawy, “Closed External Fixation for Failing or Failed Femoral Shaft Plating in a Developing Country.,” J. Clin. Diagn. Res., vol. 11, no. 8, pp. RC04–RC06, 2017.
  • [32]C.-C. Wu, “Treatment of Femoral Shaft Aseptic Nonunion Associated with Plating Failure: Emphasis on the Situation of Screw Breakage,” J. Trauma Acute Care Surg., vol. 51, no. 4, 2001.
  • [33]C. C. Kesemenli, B. Tosun and N. S. Y. Kim, “A comparison of intramedullary nailing and plate-screw fixation in the treatment for ipsilateral fracture of the hip and femoral shaft,” Musculoskelet. Surg., vol. 96, no. 2, pp. 117–124, 2012.
  • [34]R. Huiskes, “Stress shielding and bone resorption in THA: clinical versus computer-simulation studies.,” Acta Orthop. Belg., vol. 59, no. 1, pp. 118–129, 1993.
  • [35]P. Goshulak, S. Samiezadeh, M. S. R. Aziz, H. Bougherara, R. Zdero and E. H. Schemitsch, “The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants,” Med. Eng. Phys., vol. 38, no. 3, pp. 232–240, 2016.
  • [36]C. Bitsakos, J. Kerner, I. Fisher and A. A. Amis, “The effect of muscle loading on the simulation of bone remodelling in the proximal femur,” J. Biomech., vol. 38, no. 1, pp. 133–139, 2005.
  • [37] M. Arpacioglu, I. Akmaz, M. Mahirogullari, A. Kiral and O. Rodop, “Treatment of femoral shaft fractures by interlocking intramedullary nailing in adults,” Acta Orthopaedica et Traumatologica Turcica, c. 37. Turkish Association of Orthopaedics and Traumatology, pp. 203–212, 2006.
  • [38]H. C. Pape, M. Auf’m’Kolk, T. Paffrath, G. Regel, J. A. Sturm and H. Tscherne, “Primary intramedullary femur fixation in multiple trauma patients with associated lung contusion--a cause of posttraumatic ARDS?,” J. Trauma, vol. 34, no. 4, pp. 540 - 547, 1993.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü