Biyolojik Yöntem ile GO Katkılı Al/(Biyo-ZnO)/pSi Schottky Diyotların Üretimi ve Elektriksel Karakterizasyonu

Biyolojik sentez yöntemi, kimyasal ve fiziksel yöntemlerin aksine toksik kimyasallar ve yüksek enerji gerektirmediği için zararsız, düşük maliyetli ve kolay uygulanabilir bir yöntemdir. Biyolojik sentez yöntemiyle nano boyutlu metaloksitler ve metaloksit olmayan tozlar üretilebilmektedir. Metaloksitler içerisinde yer alan çinkooksit (ZnO) elektriksel ve kimyasal özellikleri nedeniyle sağlık, elektronik ve yarıiletken cihazlar gibi geniş bir kullanım alanına sahiptir. ZnO birçok yöntemle üretilebileceği gibi biyolojik yöntemle de üretilebilmektedir. ZnO geniş bant aralığı, yüksek bağlanma enerjisi ve UV ışığa duyarlılığı nedeniyle elektronik ve optik sektörü için araştırmacıların ilgisini çekmektedir. ZnO film kaplamalarda hızlı elektron-deşik rekombinasyonu nedeniyle yapıya farklı malzemelerin dop edilmesi ile yük taşıyıcı konsantrasyonu arttırılarak elektriksel özellikler geliştirilebilmektedir. Bu çalışmada biyolojik sentez yöntemi ile ZnO tozu ve Hummer metodu ile grafenoksit (GO) sentezlenmiştir. Elde edilen nihai tozlar sol jel yöntemiyle solüsyon haline getirilmiş ve silisyum altlıkların yüzeyine döndürme kaplama yöntemi ile kaplanmıştır. Kaplama işlemi 3000 dv/dk 30 saniyede gerçekleştirilmiştir. Hazırlanan ince film kaplamalar için alüminyum (Al) ohmik ve doğrultucu kontaklar fiziksel buhar biriktirme (PVD) yöntemiyle kaplanmıştır. Kaplamalar morfolojik ve kimyasal olarak taramalı elektron mikroskobu (FESEM) ve X-ışını kırınım (XRD) ile karakterize edilmiştir. Kesitten alınan FESEM görüntüleri, kaplama kalınlığının ortalama 200 nm olarak elde edildiğini ve yüzey görüntüsü, homojen kaplama yapıldığını göstermektedir. EDS analizi ile yüzeyde GO’dan kaynaklanan C, O atomları ve ZnO’dan kaynaklanan Zn, O atomları tespit edilmiştir. Elektriksel karakterizasyon için karanlık ortamda Keıthley 2400 cihazında ±4 V aralığında akım-voltaj (I-V) analizi yapılmıştır. Elde edilen verilerden ideal parametrelere sahip Shottky diyotun GO katkılı biyolojik sentezle üretilmiş ZnO kullanılan (Al/(Biyo-ZnO:GO)/pSi) diyot olduğu belirlenmiştir.

___

  • [1] Ling T, Song J-G, Chen X-Y, Yang J, Qiao S-Z, Du X-W. Comparison of ZnO and TiO 2 nanowires for photoanode of dye-sensitized solar cells. J Alloy Comp 2013;546:307e13.
  • [2] Akir S, Barras A, Coffinier Y, Bououdina M, Boukherroub R, Omrani AD. Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram Int 2016;42:10259e65.
  • [3] Yan L, Zhao W, Liu Z. 1D ZnO/BiVO4 heterojunction photoanode for efficient photoelectrochemical water splitting. Dalton Trans 2016;45:11346e52
  • [4] Yang C, Li Q, Tang L, Bai A, Song H, Yu Y. Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity. J Mater Sci 2016;51:5445e59.
  • [5] Zhan X, Chen F, Salcic Z, Wong CC, Gao W. Synthesis of ZnO submicron spheres by a two-stage solution method. Appl Nanosci 2012;2:63e70.
  • [6] Yousef, A., Barakat, N. A., Amna, T., Unnithan, A. R., Al- Deyab, S. S., & Kim, H. Y., “Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: Effective visible light photocatalyst for waste water treatment”, Journal of Luminescence, 132(7), 1668-1677, 2012.
  • [7] Ni M, Leung MKH, Leung DYC, Sumathy K. “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production”, Renew Sustain Energy Rev, 11:401-25, 2007.
  • [8] Ajitha, B., Reddy, Y.A.K., Reddy, P.S.,“Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities”, Journal of Photochemistry and Photobiology B: Biology, 146, 1-9, 2014.
  • [9] Harshiny, M., Iswarya, C.N., Matheswaran, M. “Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent”, Powder Technology, 286, 744-749, 2015.
  • [10] Nagarajan, S., Kuppusamy, K.A. “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India”, Journal of Nanobiotechnology, 11, 39-49,2013.
  • [11] Pourmortazavi, S.M., Taghdiri, M., Makari, V., Rahimi-Nasrabadi, M. “Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1249–1254, 2015.
  • [12] M. Naseer, U. Aslam, B. Khalid, B. Chen, “Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential”, Nature, 2020.
  • [13] S. O.Ogunyemi, Y. Abdallaha, M. Zhanga, H. Fouad, X. Honga, E. Ibrahima, Md. M. I. Masuma, A. Hossaina, J. Moc and B. Lia “Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryza”, Cells, Nanomedıcıne, And Bıotechnology,. 47, 341–352, 2019.
  • [14] R. Paul, R.N. Gayen, S. Biswas, S.V. Bhat, R. Bhunia, “Enhanced UV detection by transparent graphene oxide/ZnO composite thin films”, RSC Adv. 6, 61661–61672,2016.
  • [15] R.N. Gayen, R. Paul, Nanocrystalline Zn1−xMnxO thin film based transparent Schottky diodes, Thin Solid Films 605, 248–256,2016.
  • [16] Dubale AA, Su W-N, Tamirat AG, Pan C-J, Aragaw BA, Chen H-M, et al. The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution hotocathode in water splitting. J Mater Chem A,2:18383-97,2014.
  • [17] Hendi, A. A., “Electrical and photoresponse properties of graphene oxide:ZnO/Si photodiodes”, Journal of Alloys and Compounds 647,259-264,2015.
  • [18] Kindalkar, V.S., Sandeep, K.M., Kumara, K., Dharmaprakash, S.M., “Sol-gel synthesized spin coated GO: ZnO composite thin films: optical, structural and electrical studies”, Materials Research Express, 6, 096435,2019.
  • [19] Ghorbani M., Abdizadeh H., Taheri M., Golobostanfard M.R., (2018) ‘’ Enhanced photoelectrochemical water splitting inhierarchical porous ZnO/Reduced graphene oxide nanocomposite synthesized by sol-gel method’’,Hydrogen Energy, V:43, P: 7754-7763.
  • [20] Demir Ersöz, G., (2021), “Investigation on UV Photoresponsivity of main electrical properties of Au/CuO-PVA/n-Si MPS type Schottky Barrier Diodes (SBDs)”, Physica B: Physics of Condensed Matter, Volume 604, 412723.
  • [21] Yıldırım, N., Durumlu, E., (2017), “Ag/Azure A /n-Si Schottky diyotun elektriksel ve fotovoltaik özelliklerinin araştırılması”, Tr. J. Nature Sci., Vol. 6 No. 1.
  • [22] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior”, Mater Sci: Mater Electron, 20, 376–379,2009.
  • [23] H. Sun, Qi-F. Zhang, Jin-LeiWu, “Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure”, Nanotechnology, 17,2271–2274,2006.
  • [24] N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M. S.Aida, “Structural, optical and electrical properties of n-ZnO/p-Si heterojunction prepared by ultrasonic spray”, Materials Science in SemiconductorProcessing, 14, 229–234, 2011.
  • [25] S. Sharma, C. Periasamy, “A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique”, Superlattices and Microstructures, 73, 12-21,2014.
  • [26] Demir Ersöz, G.,, “Au/pSi, Au/PVA/pSi, Au/PVA:Gr/pSi Schottky bariyer diyotların üretimi ve temel elektriksel özelliklerinin incelenmesi”, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol 11, 157-168,2021.
  • [27] W., Chebil, A., Gokarna, A., Fouzri, N., Hamdaoui, K., Nomenyo, G., Lerondel, “Study of the growth time effect on the structural, morphological and electrical characteristics of ZnO/p-Si heterojunction diodes grown by sol-gel assisted chemical bath deposition method”, Journal of Alloys and Compounds, 771,448-455,2019.
  • [28] Card H.C., Rhoderick E.H., “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes”, J. Phys. D: Appl. Phys., 4(10), 1589–1601,1971.
  • [29] Soylu Koc N., Altintas S.P., Gokcen M., Dogruer M., Altug C., Varilci A., “Current-Voltage Characteristics of Nano Whisker ZnO/Si Heterojunction Under UV Exposition”, Sensors and Actuators A: Physical, 342, 113618,2022.
  • [30] Konios D., Stylianakis, M., Stratakis, E., Kymakis, E., “Dispersion behaviour of graphene oxide and reduced graphene oxide”, Journal of Colloid and Interface Science, Volume 430, 108-112,2014.
  • [31] J. Farazin, M. S. Asi, G. Pirgholi-Givi, S.A. Delbari, A.S. Namini, Ş. Altındal, Y. Azizi-Kalandaragh, “Effect of (Co-TeO2 – doped polyvinylpyrrolidone) organic interlayer on the electrophysical characteristic of Al/p-Si (MS) structures”, Journal of Material Science: Material in Electronics, 32, 21909-21922, 2021.
  • [32] Ş. Altındal, A. Barkhordari, G. Pirgholi-Givi, M. Ulusoy, H. Mashayekhi, S. Ozcelik, Y. Azizi-Kalandaragh, “Comparison of the electrical and impedance properties of Au/(ZnOMn:PVP)/n-Si (MPS) type Schottky-diodes (SDs) before and after gamma-irradiation”, Physica Scripta, 96, 125881,2021.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü