Bazı K ve Ca Bileşikleri İçin Kütle Zayıflatma Katsayısı, Toplam Elektronik Tesir Kesiti, Toplam Atomik Tesir Kesiti, Etkin Atom Numarası, Etkin Elektron Yoğunluğu ve Kerma Ölçümü

Bu makalede bazı K ve Ca bileşiklerinin deneysel ve teorik kütle zayıflama katsayısı geçirgenlik yöntemi kullanılarak hesaplanmıştır. Ayrıca hesaplanan kütle zayıflama katsayısı verileri kullanılarak toplam elektronik tesir kesiti, atomik tesir kesiti, etkin atom numarası, etkin elektron yoğunluğu ve Kerma parametreleri elde edildi. Bu radyasyon zayıflatma parametreleri dar ışın deney geometrisi kullanarak elde edildi. Bu çalışmada ölçümler Am-241 kaynağından 59.543 keV'de yüksek çözünürlüklü bir Si (Li) detektörü kullanılarak yapılmıştır. Teorik kütle zayıflatma katsayısı WinXCOM data programı ile hesaplanmıştır. Mevcut çalışma, seçilen bileşiklerin gama zayıflama özelliklerini içermektedir. Gama zayıflama parametreleri, seçilen tüm bileşikler için ayrıntılı olarak incelenmiştir.

Measurement of Mass Attenuation Coefficient, Total Electronic Cross-section, Total Atomic Cross-section, Effective Atomic Numbers, Effective Electron Densities and Kerma for Some K and Ca Compounds

In this manuscript is calculated the experimental and theoretical mass attenuation coefficient some K and Ca compounds by using transmission method. Also the total electronic cross section, atomic cross section, effective atomic number, effective electron density and Kerma parameters were obtanied using the calculated mass attenuation coefficient data. These radiaton attenuation parameters were obtained using the values calculated attenuation with the narrow beam experimental geometry. In this study, measurements were made using a high resolution Si (Li) detector at 59,543 keV from the Am-241 source. The theoretical mass attenuation coefficient were calculated from the WinXCOM data programme. The current study involves the gamma attenuation properties of selected compounds. The gamma attenuation parameters are studied in detail for all selected compounds.

___

  • [1] E. Dellow.“Dose determination at keV X-ray qualities using different protocols”, Yüksek Lisans Tezi. Tıbbi Fizik Programı, Tıbbi Radyasyon Fiziği Klinik Bilimleri, Lund University, 2008.
  • [2] V. Shivaramu, R. Kumar, L. Rijasekaran ve N. Ramamurthy, “Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest”, Radiation Physics and Chemistry, c. 62, ss. 371-377, 2001.
  • [3] N. Kanematsu, T. İnaniwa ve Y. Koba, “Relationship between electron density and effective densities of body tissues for stopping, scattering and nuclear interactions of proton and ion beams”, National Institute of Radiological Sciences, Medical Physics, c. 39, s. 2, ss. 1016-1020, 2012.
  • [4] J. Seco ve P. M. Evans, “Assessing the effect of electron density in photon dose calculations”, Medical Physics, c. 33, ss. 540, 2006.
  • [5] I. Han ve L. Demir, “Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies”, Nuclear Instruments and Methods in Physics Research Section B., c. 267, ss. 3-8, 2009.
  • [6] G. F. Knoll, “Radiation Detection and Measurement,” University of Michigan, John Wiley & Sons, Inc.New York, 2002, ss. 830.
  • [7] J. H. Hubbell, “Photon mass attenuation and energy-absoption coefficients from 1 keV to 20 MeV” ,International Journal of Applied Radiations and Isotopes, c. 33, ss. 1269-1290, 1982.
  • [8] J. H. Hubbell ve S. M. Seltzer, “Tables of X-ray mass attenuation coefficients and mass energyabsorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest”, National Institute of Standards and Physics Laboratory, NISTIR, ss. 5632, 1995.
  • [9] L. Gerward, N. Guilbert, K. B. Jensen ve H. Levring, “X-ray absorption in matter Reengineering XCOM”, Radiation Physics and Chemistry, c. 60, ss. 23–24, 2001.
  • [10] C. T. Chantler, “Theoretical form factor, attenuation and scattering tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV,” J. Phys. Chem., c. 24, ss.71-643, 1995.
  • [11] J. H. Hubbell, “Review of photon interaction cross section data in the medical and biological context,” Physics in Medicine & Biology, c. 44, 1999.
  • [12] G. J. Hine, “The effective atomic numbers of materials for various gamma interactions, Secondary electron emission and effective atomic numbers,” Physical Review, c. 85, ss. 725-737, 1952.
  • [13] V. Manjunathaguru ve T. K. Umesh, “Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145-1330 keV”, Journal of Physics B: Atomic, Molecular and Optical Physics, c. 39, s. 18, ss. 3969-3981, 2006.
  • [14] U. Çevik, E. Bacaksız, N. Damla ve A. Çelik, “Effective atomic numbers and electron densities for CdSe and CdTe semiconductors”, Radiation Measurements, c. 43, s. 8, ss. 1437-1442, 2008.
  • [15] M. Kurudirek, M. Büyükyıldız ve Y. Özdemir, “Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV-100 GeV”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated. c. 613, s. 2, ss. 251-256, 2010.
  • [16] B. Rudraswamy, N. Dhananjaya ve H. C. Manjunatha, “Measurement of absorbed dose rate of gamma radiation for lead compounds”, Nuclear Instyrements and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipmen, c. 619, s. 1-3, ss. 171- 173, 2010.
  • [17] M. Kurudirek, “Bazı çoklu element yapıdaki maddelerin foton etkileşimi, foton enerji soğurması, foton kuvvetlendirme faktörü ve hızlı nötron azaltma tesir kesitleri açısından incelenmesi,” Doktora tezi, Fizik, Fen BilimleriEnstitüsü, Atatürk Üniversitesi Erzurum, Türkiye, 2011.
  • [18] H. C. Manjunatha ve B. Rudraswamy, “Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV100 GeV”, Health Physics, c. 104, s. 2, ss. 158-162, 2013.
  • [19] I. Han, M. Aygün, L. Demir ve Y. Şahin, “Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach,” Annals of Nuclear Energy, c. 39, s. 1, ss. 56-61, 2012.
  • [20] K. S. Mann, J. Singla, V. Kumar ve G. S. Sidhu, “Investigation of mass attenuation coefficients and exposure building factors of some low-Z building materials,” Annals of Nuclear Energy, c. 4, ss. 157-166, 2012.
  • [21] M. L. Taylor, R. L. Smith, F. Dossing ve R. D. Franich, “Robust calculation of effective atomic numbers:the auto-Zeff software”, Medical Physics, c. 39, s. 4, ss. 1769-1778, 2012.
  • [22] N. Küçük, M. Çakır ve N. A. Isıtman, “Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers”, Radiation Protection Dosimetry, c. 153, s. 1, ss. 127-134, 2013.
  • [23] A. Un ve F. Demir, “Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal weight concretes”, Applied Radiation and Isotopes, c. 80, ss. 73-77, 2013.
  • [24] Y. Zheng, X. K. Li, Y. Wang ve L. Cai, “The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators”, Hemoglobin, c. 32, s. 1-2, ss. 135-145, 2008.
  • [25] P. J. Parsons ve F. Barbosa, “Atomic spectrometry and trends in clinical laboratory medicine”, Spectrochimica Acta Part B: Atomic Spectroscopy, c. 62, s. 9, ss. 92-1003, 2007.
  • [26] F. D. Jackson ve D. J. Hawkes, “X-Ray attenuation coefficients of elements and mixtures”, Physics Reports, c. 70, s. 3, ss. 169-233, 1981.
  • [27] M. P. Singh, B. S. Sandhu ve B. Singh “Measurement of effective atomic number of composite materials using scattering of γ-rays”, Nuclear Instruments and Methods in Physics Research, A, c.580, ss. 50-53, 2007.
  • [28] K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S. S. Bhatti ve H. S. Sahota, “Gamma-ray attenuation coefficients in bismuth borate glasses,” Nuclear Instruments and Methods in Physics Research Section B, c. 194, ss. 1-6, 2002.
  • [29] S. R. Manohara, S. M. Hanagodimath, K. S. Thind ve L. Gerward, “On the effective atomic number: a comprehensive set of formulas for all types of materials” Nucl. Instrum. Methods Phys. Res. B, c. 266, ss. 3906–3912, 2008.
  • [30] V. P. Singh, M .E. Medhat, N. M. Badiger ve A. Z. M. S. Rahman, “Radiation shielding effectiveness of newly developed superconductors,” Radiation Physics and Chemistry, c. 106, ss. 175- 183, 2015.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü