Altı Silindirli Bir Dizel Motorun Turbo Şaft Hızının Motor Performansına Etkisinin Deneysel Olarak İncelenmesi

İçten yanmalı motorların icadı ile birlikte aynı hacimden daha fazla güç elde etmek, ortaya çıkan araştırma konularından biri olmuştur. Aşırı doldurma sistemlerinden biri olarak turboşarj, motorun yanma odasına gönderilen hava miktarını arttırarak motordan daha fazla güç elde edilmesini amaçlamaktadır. Turboşarj komplesi türbin ve kompresör olmak üzere 2 temel bileşenden oluşmaktadır. Yanma sonucu oluşan egzoz gazlarının enerjisini, motora giren havayı sıkıştırmak için kullanan turboşarj sistemi, ortak bir şaft aracılığı ile motora giren havayı sıkıştırır. Basınçlanan ve sıkışan hava, yanma odasına iletilir ve böylece aynı hacme daha yoğun hava gönderilmiş olur. Bu çalışmada standart dizel yakıtı ile çalıştırılan, dört zamanlı, altı silindirli ve su soğutmalı dizel bir motorun, turbo tahliye basıncı ayarlanarak farklı turboşaft hızlarında motor performans değerleri ölçülmüştür. Motor tam yükte ve 1000, 1500 ve 1800 d/dak motor hızlarında iken farklı turboşaft hızlarının, motor gücüne, torkuna, silindir içi basınçlara, fren özgül yakıt tüketimine, egzoz manifold sıcaklığına ve emisyonlara (İs, NOx, CO ve HC) etkileri deneysel olarak incelenmiştir. Yapılan çalışmada, motor tam yük ve 1500 d/dak’da iken turboşaft hızı artışının motor tork ve gücünü doğru orantılı olarak artırdığı görülmüştür. Turboşarj hızı arttıkça is, CO ve NOx emisyonları azalmış, HC emisyonu ise artmıştır. Motor tam yük ve 1500 d/dak’da iken tahliye basıncının 2,6 bar seviyesine ayarlanması, egzoz manifoldu sıcaklığını aşırı arttırmış ve güvenli bölgenin dışına çıkılmıştır.

Experimental Investigation of the Effect of Turbo Shaft Speed on Engine Performance of a Six Cylinder Diesel Engine

Since the invention of internal combustion engines, obtaining more power from the same volume has been one of the emerging research topics. As one of the supercharging systems, the turbocharger aims to obtain more power from the engine by increasing the amount of air sent to the combustion chamber of the engine. The turbocharger assembly consists of two basic components, the turbine and the compressor. The turbocharger system uses the energy of combustion exhaust gases to compress the air entering the engine. Pressurized and compressed air is transmitted to the combustion chamber, so that denser air is sent to the same volume. In this study, engine performance values of a four-stroke, six-cylinder and water-cooled diesel engine, which is run with standard diesel fuel, were measured at different turboshaft speeds by adjusting the waste gate pressure. The effects of different turboshaft speeds on engine power, torque, peak fire pressures, brake specific fuel consumption, exhaust manifold temperature and emissions (Soot, NOx, CO and HC) at full load and engine speeds of 1000, 1500 and 1800 rpm were experimentally investigated. In the study, it was observed that increase in the turboshaft speed increased in the engine torque and power when the engine was at full load and 1500 rpm. As the turbocharger speed increased, the soot, CO and NOx emissions decreased and the HC emissions increased. Adjusting waste gate pressure to 2.6 bar when the engine is at full load and 1500 rpm has increased the exhaust manifold temperature excessively and the safe zone has been exceeded.

___

  • [1]M.P. Guerrier, P.A. Williams, A.R. Greig, M. Fry, A.J. Allnutt and J.N. Stewart, "The application of phosphorescent particle tracking (PPT) to the visualisation of gas flows in the cylinder of a 1.8 litre 4-valve engine," SAE Transactions, vol. 108, no. 3, pp. 1538-1553, 1999.
  • [2]H. Hiereth and P. Prenninger, Charging the internal combustion engine, Newyork, USA: Springer Science & Business Media, 2007, pp. 60–101.
  • [3]S. Shaaban, "Experimental investigation and extended simulation of turbocharger non-adiabatic performance," Ph.D dissertation, Department of Mechanical Engineering, University of Hanover, Hanover, 2004.
  • [4]S. M. Shahed and K.H. Bauer, "Parametric studies of the impact of turbocharging on gasoline engine downsizing," SAE International Journal of Engines, vol. 2, no. 1, pp. 1347-1358, 2009.
  • [5]P.N. Pakale and S.U. Patel, "Performance analysis of IC engine using supercharger and turbocharger-a review," International Journal of Research in Engineering and Technology, vol. 4, no. 2, pp. 17-22, 2015.
  • [6]M. Weissbäck, Mike Howlett, N. Ausserhofer and S. Krapf, “The efficiency engine - cost-effective alternative to downsizing,” Auto Tech Review, vol. 1, no. 2, pp. 33–36, 2011.
  • [7]D. Marchant, A. Kusztelan, Y. Yao and Y. Wang, "Comparative study of turbine shaft speed for two alternative turbocharger types fitted to a light-duty CI engine," Scientific Proceedings XXI International Scientific-Technical Conference, 2013, pp. 63-67.
  • [8]C. Hasler, "Optimisation of wastegate bypass flow reintroduction for increased turbine stage efficiency," 13th International Conference on Turbocharges and Turbocharging, 2018, pp. 309-320.
  • [9]S. Kharazmi, A. Hajilouy-Benisi and A. Mozafari, "Experimental ınvestigation of vaste gate effects on performance and NOx emissions in a turbocharged aftercooled CNG SI engine and its turbocharger," SAE Technical Paper, vol. 148, no. 1, pp. 7191-7202, 2015.
  • [10]A. Teo Sheng Jye, A. Pesiridis and S. Rajoo, "Effects of mechanical turbo compounding on a turbocharged diesel engine," SAE International and Copyrigh, vol. 103, no. 1, pp. 1-10,2013.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü