Zemin Taşıma Gücünün Üstyapı Performansına Etkisi

Bu çalışma kapsamında, taban zemin taşıma gücünün esnek üstyapı bozukluklarına etkileri incelenmiştir. Taban zemininin üstyapı performansına etkisini belirlemek için öncelikle, daha önce Karayolları Esnek Üstyapılar Projelendirme Rehberine göre tasarlanmış üç farklı esnek üstyapı seçilmiştir. İkinci adımda, farklı taban zemin taşıma gücünün (5-50 CBR) esnek üstyapı bozukluklarına (tekerlek izi ve yorulma çatlakları) etkileri üç farklı trafik seviyesi [5000, 10000 ve 15000 yıllık ortalama günlük kamyon trafiği (AADTT)] için AASHTOWare Pavement ME Design v2.5.5 kullanılarak İzmir bölgesi iklim koşullarında kapsamlı üstyapı analizleri yapılmıştır. Çalışma sonuçları; taban zemini taşıma gücünün esnek üstyapı bozuklukları oluşması üzerinde yüksek bir etkiye sahip olduğunu ortaya çıkartmıştır. Elde edilen analiz sonuçlarına göre; taban zemini taşıma gücünün 50'den 5 CBR'ye azalması durumunda, toplam tekerlek izinde oturma derinliğinin 9,1 mm'den 12,7 mm'ye artacağı, ayrıca taban zemin taşıma gücünün bitümlü sıcak karışım (BSK) tabakalarında oluşabilecek tekerlek izinde oturma derinliği üzerindeki etkisinin ihmal edilebilir düzeyde olacağı tespit edilmiştir. Analiz sonuçları ayrıca yine taban zemin taşıma gücünün 50 CBR'den 5 CBR’ye düşmesi durumunda, timsah sırtı çatlak oluşumlarını ortalama % 5,6 (% 1,8 ila 7,4) arttıracağını, boyuna çatlakları ise önemli bir derecede azaltacağını göstermektedir (314.7'den 65.1'e). Ayrıca, sonuçlar, enine çatlakların taban zemini taşıma gücünün değişimine duyarlı olmadığını göstermektedir. Bu çalışmanın sonuçları, karayolu kurum ve kuruluşları, belediyeler ve bireysel üstyapı tasarımcılarına daha iyi üstyapı tasarımı yapmalarında yardımcı olabilir.

Impact of Subgrade Strength on Pavement Performance

Based on the standard design of flexible pavement structure conducted in Turkey, only subbase course layer is affected by the variation of subgrade strength and other pavement layers (wearing course, binder course, asphalt concrete (AC) base course, and crushed stone base course) are not influenced by the variation of subgrade strength. Therefore, the aim of this study is to investigate the impact of subgrade strength on flexible pavement distresses. To achieve the objectives, firstly, three different flexible pavement structures designed using the Turkish Flexible Pavement Design Guide 2008 were chosen and secondly, the effect of variation of subgrade strength [5 to 50 California Breading Ratio (CBR)] on pavement performance (rutting and fatigue cracking) for three different traffic levels [5000, 10000, and 15000 average annual daily truck traffic (AADTT)] for climatic condition of Izmir region using AASHTOWare Pavement ME Design v2.5.5 were analyzed. The results of the study show that, reducing subgrade CBR values from 50 to 5 CBR resulted in an increase by 3.7mm in total rutting depth and 5.6% in alligator cracking magnitude. Also, results demonstrated that the influence of subgrade strength on rutting within asphalt concrete layers (AC rutting) is negligible. By contrast, increasing subgrade CBR value from 5 to 50 resulted in a significant increase (65.1 to 314.7 m/km) in longitudinal cracking magnitude while thermal (transverse) cracking is not sensitive to the variation of subgrade CBR values. This study can assist highway agencies and individual pavement designers in the design a more practical pavement.

___

  • [1] General Directorate of Highways, Turkish Flexible Pavement Design Guide. Ankara: General Directorate of Highways, 2008.
  • [2] C. W. Schwartz and R. L. Carvalho, “Implementation of the NCHRP 1-37A Design Guide Final Report Volume 2: Evaluation of Mechanistic-Empirical Design Procedure,” Maryland State Highway Administration, Maryland, 2007.
  • [3] M. R. Shakhan, A. Topal, B. Şengöz, and A. Almusawi, “Review of the Implementation of the Mechanistic-Empirical Pavement Design Guide,” in 3rd International Students Science Congress, 2019, no. 12, pp. 138–153.
  • [4] AASHTO, Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Ed. USA: American Association of State Highway and Transportation Officials, 2008.
  • [5] AASHTO, Mechanistic-Empirical Pavement Design: A Manual of Practice, 2nd ed. USA: American Association of State Highway and Transportation Officials, 2015.
  • [6] AASHTO, Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, 3rd ed. USA: American Association of State Highway and Transportation Officials, 2020.
  • [7] ARA Inc., “AASHTOWare Pavement ME Design – Release Notes,” AASHTO, 2020. https://me-design.com/MEDesign/Documents.html.
  • [8] General Directorate of Highways, Highway Technical Specifications, 2013th ed., vol. 1. Ankara, Turkey: General Directorate of Highways, 2013.
  • [9] General Directorate of Highways, “Features and Trends of Heavy Vehicle Traffic in Freight Transport on Highways, 2010-2014,” General Directorate of Highways, Ankara, 2014.
  • [10] NCHRP, “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Part 2. Traffic,” National Cooperative Highway Research Program, 2004.
  • [11] H. I. Öztürk, E. B. Tan, E. Şengün, and İ. Ö. Yaman, “Farklı trafik , zemin , malzeme ve iklim koşulları için mekanistik-ampirik ( M-E ) yöntemle tasarlanan derzli donatısız rijit üstyapı sistemlerinin karşılaştırılması,” J. Fac. Eng. Archit. Gazi Univ., vol. 34, no. 2, pp. 771–783, 2019,
  • [12] M. R. Shakhan, A. Topal, and B. Sengoz, “Data Collection for Implementation of the Mechanistic-Empirical Pavement Design Guide (MEPDG) in Izmir, Turkey,” Tek. Dergi, vol. 32, no. 6, 2021,
  • [13] NCHRP, “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Part 3. Design Analysis,” National Cooperative Highway Research Program, Illinois, 2004.