Yüzme Havuzlarında Karbon Bazlı Dezenfeksiyon Yan Ürünlerinin Oluşumu

Bu çalışmada ülkemiz literatüründe ilk defa yer alacak ve oldukça önemli bir konu olan yüzme havuzlarındaki dezenfeksiyon yan ürünlerinin (DYÜ) türleri, DYÜ oluşumuna etki eden faktörler ve DYÜ’lerin sağlık etkileri konusunda bir derleme yapılmıştır. İçme suyu şebekesi ve yüzme havuzlarındaki patojen mikroorganizmaların engellenebilmesi amacıyla birçok dezenfektan kullanılmaktadır. Yüzme havuzlarında genellikle klor bazlı dezenfektanlar kullanılırken, bromlu dezenfektanlar da dezenfeksiyon için tercih edilmektedir. Havuz suyundaki organik madde kaynakları; i) doldurma suyunda bulunan doğal organik maddeler (DOM) ve ii) yüzücülerden gelen organik yüklemelerdir. Yüzme havuzları özelinde yüzücülerden kaynaklı daimi organik yükleme ve sürekli dezenfeksiyon sonucu (organik maddelerin oksidantlar/dezenfektanlar ile reaksiyonu sonucunda) mutajenik ve kanserojenik olmalarından şüphelenilen DYÜ oluşumu içme sularındakine nazaran daha fazladır. Trihalometan (THM) ve haloasetik asitler (HAA), havuz suyunda en sık karşılaşılan yan ürünlerdir. THM gibi uçucu olan yan ürünler sadece yüzme suyunda değil, havada da oldukça yüksek konsantrasyonlarda bulunabilmektedir. Bu yan ürünlerin oluşum mekanizmalarının bilinmesi ve kontrol altına alınması, yüzücüler ve bilhassa havuz çalışanlarının sağlığına olan etkilerinin en aza indirilmesi bağlamında önem arz etmektedir. Oluştuktan sonra giderilmesi zor ve maliyetli olan DYÜ’lerin oluşumunda etkili öncüllerin belirlenmesi ve kontrolü ile uygun dezenfektan türünün kullanılmasıyla yüzme havuzlarındaki DYÜ oluşumları azaltılabilir.

Formation of Carbon-Based DBPs in Swimming Pool

This paper aims to review available information in the literature on the factors responsible on formation, species disinfection by-products (DBPs) and their health effects in swimming pool water. DBPs in swimming pools is significant for international literature and this review is the first study with the main focus of DBPs in swimming pool in national academic arena. Various disinfectants are applied in order to eliminate the pathogen microorganisms in drinking water distribution network and swimming pools. While chlorine based disinfectants are used commonly, also bromine based chemicals are preferential disinfectants. The sources of the organic matter precursors are; i) natural organic matter content of filling water and ii) organic loadings from swimmers. While disinfectants inactivate pathogens in swimming pools, mutagenic or carcinogenic DBPs are formed as a result of reactions between disinfectants and natural organic matter (NOM), bromide/iodide and human inputs. The formation of DBPs in swimming pool are higher than drinking water due to higher disinfectants residual and DBPs precursors. Trihalomethanes (THMs) and haloaceticacids (HAAs) are commonly observed as DBPs in swimming pools. THMs can be observed high concentration not only in swimming pool waters but also in indoor air ambition due to their volatile nature. Understanding of DBPs formation and control in swimming pools is important to minimize adverse health effects. It is much easier and cheaper to reduce DBPs before formation the pool with removal of precursors and use of proper disinfectants.

___

  • Stalter, D., O’Malley, E., von Gunten, U.,
  • Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products, Water Research, Cilt. 91, s. 19-30.
  • [2] Bessonneau, V.,
  • Clement, M., Thomas, O. 2011. Determinants of chlorination by- products in indoor swimming pools, International Journal of Hygiene and Environmental Health, Cilt. 215, s. 76-85.
  • M., [3] Plewa, M.J., Simmons, J. E., Richardson, D. S., Wagner, E. D. 2010. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, A Major Class of Drinking Water Disinfection By-Products. Environmental
  • Mutagenesis. Cilt. 51, s. 871-878.
  • Lee, J., Jun, M.J., Lee, M.H., Lee, M.H., Eom, S.W., Zoh, K.D. 2010. Production of various disinfection by-products in indoor swimming pool waters treated with different disinfection methods, International Journal
  • Environmental Health, Cilt. 213, s. 465-474.
  • and [5] Weisel, C.P., Richardson, S.D., Nemery, B., Aggazzotti, G., Baraldi, E., Blatchley, E.R., Blount, B.C., Carlsen, K.H., Eggleston, P.A., Frimmel, F.H., Goodman, M., Gordon,
  • Heederik, D., Kogevinas, M., LaKind, S.A., and
  • environmental [6] Richardson, S.D., Plewa, M.J., E.D., Wagner,
  • DeMarini, D.M. 2007. Occurrence, genotoxicity, and carcinogenicity of regulated
  • disinfection byproducts in drinking water: a review and roadmap for research, Mutation Research, Cilt. 636, s. 178-242.
  • R., emerging [7] Zwiener, C., Richardson, S.D., DeMarini, D.M., Grummt, T., Glauner, T., Frimmel, F.H. 2007. Drowning
  • byproducts? Assessing swimming pool water, Environmental Science & Technology, Cilt. 41, s. 363–372.
  • Richardson, S.D., DeMarini, D.M., Kogevinas, M., Fernandez, P., Marco, E., Lourencetti, C., Ballesté, C., Heederik, D., Meliefste, K., McKague, A.B. 2010. What's in the pool?
  • identification of disinfection by- products and assessment of mutagenicity of chlorinated and brominated swimming poolwater, Environmental Health Perspectives, Cilt. 118, s. 1523–1530.
  • Kanan, A., Karanfil, T. 2011. Formation
  • byproducts in indoor swimming pool water: the contribution from filling water natural organic matter and swimmer body fluids, Water Research, Cilt. 45, s. 926-932.
  • Kim, H., Shim, J., Lee, S. 2002. Formation byproducts swimming
  • Chemosphere, Cilt. 46, s. 123-130.
  • water, [11] Chu, H., Nieuwenhuijsen, M.J. 2002. Distribution and determinants of trihalomethanes concentrations in indoor
  • Occupational and Environmental Medicine, Cilt. 59, s. 243-247.
  • Chowdhury, S., Al-Hooshani, K., Karanfil, T. 2014. Disinfection byproducts in swimming pool: occurrences,
  • future needs, Water Research, Cilt. 53, s. 68–109.
  • and [13] Florentin, A., Hautemanie`re, A., Hartemann, P. 2011. Health effects of disinfection by-products in chlorinated
  • International Journal of Hygiene and Environmental Health, Cilt. 214, s. 461-469.
  • pools, [14] Gürses, F.P. 2006. Klorlanmış içme ve ekstraksiyonu
  • kromotografisi ile karsinojenik dezenfeksiyon yan ürünlerinin tayini. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 52s, Adana. sıvı-sıvı ve
  • iyon [15] Rook, J.J. 1974. Formation of haloforms during chlorination of natural waters, Water Treatment and Examination, Cilt. 23, s. 351– 357.
  • Beech, J.A., Diaz, R., Ordaz, C., Palomeque, B. 1980. Nitrates, chlorates and trihalomethanes in swimming pool water, American Journal of Public Health, Cilt. 70, s. 79-82.
  • Weil, L., Jandik, J., Eichelsdörfer, D. Organic 1980.
  • compounds in swimming pool water, I.Determination of volatile halogenated
  • Wass. Abwass. Forsch, Cilt. 13, , s.165-169 (in German)
  • Z. [18] Peng, D., Saravia, F., Abbt-Braun, G., Horn, H. 2016. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance, Water Research, Cilt. 88, s. 634-642.
  • Dyck, R., Sadiq, R., Rodriguez, M.J., Simard, S., Tardif, R. 2011. Trihalomethane
  • indoor swimming pools: a level III fugacity model, Water Research, Cilt. 45, s. 5084-5098.
  • in [20] Teo, T.L.L., Coleman, H.M., Khan, S.J. 2015. Chemical contaminants in swimming implications
  • Environment International, Cilt. 76, s. 16-31. Occurrence, and
  • control, [21] Batjer, K., Cetinkaya, M., Duszeln, J.V., Gabel, B., Lahl, U., Stachel, B., Thiemann, W. 1980. Chloroform emission into urban atmosphere, Chemosphere, Cilt. 9, s. 311-316.
  • Kanan, A.A. 2010. Occurrence and formation of disinfection by- products in indoor swimming pools water, South Carolina: Clemson University, Doktora Tezi, 279s.
  • Parinet, J., Tabaries, S., Coulomb, B., Vassalo, L., Boudenne, J.L. 2011. Exposure levels to brominated compounds in seawater swimming pools treated with chlorine, Water Research, Cilt. 46, s. 828–836.
  • Manasfi, T., De Meo, M., Coulomb, B., Di Giorgio, C., Boudenne, J. 2016. Identification of disinfection by- products
  • seawater swimming pools and evaluation
  • Environment International, Cilt. 88, s. 94-102. and of
  • genotoxicity, [25] Yeh, R.Y., Farré, M.J., Stalter, D., Tang, J.Y.,Molendijk, J., Escher, B.I. 2014. Bioanalytical and chemical evaluation of disinfection by- products in swimming pool water, Water Research, Cilt. 59, s. 172– 184.
  • Maia, R., Correia, M., Pereira, I.M.B., Beleza, V.M. 2014. Optimization of HS-SPME analytical conditions using
  • trihalomethanes determination in swimming pool water samples, Microchemical Journal, Cilt. 112, s. 164-171.
  • for [27] Silva, Z.I., Rebelo, M.H., Silva, M.M., Alves, A.M., da Conceição Cabral, M., Almeida, A.C., Aguiar, F.R., de Oliveira, A.L., Nogueira, A.C., Pinhal, H.R. 2012. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification, Journal
  • Environmental Health: Part A, Cilt. 75, s. 878–892.
  • and [28] Lourencetti, C., Grimalt, J. O., Marco, E., Fernandez, P, Font-Ribera, L., Villanueva, C.M., Kogevinas, M. 2012. Trihalomethanes in chlorine and bromine disinfected swimming pools: Air-water distributions and human exposure, Environment International, Cilt. 45, s. 59-67.
  • Aggazzotti, G., Fantuzzi, G., Righi, E., Predieri, G. 1998. Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools, Science of the Total Environment, Cilt. 217, s. 155-163. [30] USEPA (U.S.
  • Environmental Protection Agency). 1998. National Primary
  • Regulations: Disinfectants and Disinfection Byproducts Notice of Data Availability. Proposed Rule. Federal Register, Cilt. 61, s. 15677.
  • EECD. 1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official of the
  • European [32] Özdemir, K., Toröz, İ. 2010. İçme suyu kaynaklarında klorlama yan ürünlerinin
  • spektrokopi yöntemi ile izlenmesi, İtüdergisi/e, Cilt. 20, s. 59-69.
  • İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. 2013. Resmi Gazete.
  • http://www.resmigazete.gov.tr/es
  • kiler/2013/03/20130307-7.htm
  • (Erişim Tarihi: 10.01.2016).
  • AFFSET. 2010. Avis de l’Agence franc¸aise de se´curite´ sanitaire de l’environnement et du travail Relatif a` «l’e´valuation des risques sanitaires lie´s aux piscines - partie 1: piscines re`glemente´es»
  • Simard, S., Tardif, R., Rodriguez, M.J. chlorination
  • occurrence in water of indoor and outdoor swimming pools, Water Research, Cilt. 47, s. 1763–1772.
  • Legay, C., Rodriguez, M.J., Sérodes, J.B., Levallois, P. 2010. Estimation of
  • presence in drinking water in epidemiological studies on adverse reproductive outcomes: A review, Science of the Total Environment, Cilt. 408, s. 456–472.
  • byproducts [37] Loos, R. ve Barcelo, D. 2001. Determination of haloacetic acids in aqueous environments by solid- phase extraction followed by ion- pair electroscopy spectrometric
  • Chromatography A, Cilt. 938, s. 45- 55.
  • mass detection, [38] Wang, J.C., Alex, T. S., Joelle, M.M., Jonna, A.K. 2014. Trihalomethanes in marine mammal aquaria: occurances, sources and health risks, Water Research, Cilt. 59, s. 219-228.
  • Sá, C.S.A., Boaventura, R.A.R., Pereira, I.B. 2012. Analysis of haloacetic acids in water and air (aerosols) from indoor swimming pools using HS-SPME/GC/ECD, Journal of Environmental Science and Health: Part A, Cilt. 47, s. 176– 183.
  • Shin, H.M., McKone, T.E., Bennett, D.H. 2016. Volatilization of low vapor pressure- bolatile organic componds
  • three cleaning products-associated activities: Potential contributions to ozone formation, Chemosphere, Cilt. 154, s. 130-137.
  • during [41] Ho, D. X., Kim, K.H., Sohn, J.R., Oh, Y.H., Ahn, J.W. 2011. Emission rates of volatile organic compounds released from newly produced household furniture products using a large-scale chamber testing method, The Scientific World Journal, Cilt. 11, s. 1597-1622. [42] Sigma Aldrich
  • Chloroform Properties.
  • http://www.sigmaaldrich.com/che mistry/solvents/chloroform
  • center.html 27.07.2016).
  • Tarihi: [43] Sigma Aldrich Dichloroacetic Acid Properties.
  • http://www.sigmaaldrich.com/cat
  • alog/product/sial/d54702?lang=e
  • n®ion=TR 27.07.2016)
  • Tarihi: [44] Barbot, E., Moulin, P. 2008. Swimming pool water treatment by ultrafiltrationeadsorption process, Journal of Membrane Science, Cilt. 314, s. 50-57.
  • Anipsitakis, G.P., Tufano, T.P., Dionysiou, D.D. 2008. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate,
  • Water [46] Weng, S.C. ve Blatchley III, E.R. Disinfection 2011.
  • dynamics in a chlorinated, indoor swimming pool under conditions of heavy use: national swimming competition, Water Research, Cilt. 45, s. 5241-5248.
  • by-product [47] Schmalz, C., Frimmel, F.H., Zwiener, C.
  • swimming pools formation and mass transfer, Water Research, Cilt. 45, s. 2681-2690.
  • in [48] Judd, S.J. ve Black, S.H. 2000. Disinfection by-products formation in swimming pool waters: a simple mass balance, Water Research, Cilt. 34, s. 1611-1619.
  • Jeong, C.H., Gao, L., Dettro, T., Wagner, E.D., Ricke, W.A., Plewa, M.J. Monohaloacetic
  • water disinfection by-products inhibit
  • steroidogenesis in mouse ovarian antral
  • Reproductive Toxicology, Cilt. 62, s. 71-76. 2016. acid drinking follicle growth and follicles in
  • vitro, [50] Biswas, P. ve Bandyopadhyoyo, R. 2016. Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration, Water Research, Cilt. 100, s. 105-116.
  • Red, F. 2007. Certified Pool-Spa Operator
  • Swimming Pool Foundation.
  • National [52] Cimentiere, N., De Laat, J. 2014. Effects of UV-dechloramination of swimming pool water on the formation of disinfection by- products: A lab-scale study, Microchemical Journal, Cilt. 112, s. 34-41.
  • Hang, C., Zhang, B., Gong, T., Xian, Q. 2016. Occurance and heath risk assesment
  • disinfection byroducts in indoor swimming pool water, Science of the Total Environment, Cilt. 54, s. 425-431.
  • halogenated [54] Yüzme Havuzlarının Tabi Olacağı Esasları Sağlık
  • Yönetmelik. 2011. Resmi Gazete. http://www.resmigazete.gov.tr/es
  • kiler/2011/12/20111215-13.htm
  • (Erişim Tarihi: 10.01.2016)
  • Lee, J., Ha, K.T., Zoh, K.D. 2009. Characteristics of trihalomethanes (THM) production and associated health
  • swimming pool waters treated with
  • methods, Science of the Total Environment, Cilt. 407, s. 1990- 1997. in different
  • disinfection [56] Venczel, L.V., Arrowood, M., Hurd, M., Sobsey, M.D. 1997. Inactivation of Oocysts
  • perfringens spores by a mixed- oxidant disinfectant and by free chlorine,
  • Environmental Microbiology, Cilt. 63, s. 1598–1601.
  • parvum Clostridium Applied
  • and [57] Kleiser, G., Frimmel, F.H. 2000. Removal
  • disinfection by-products (DBPs) – differences between ozone- and OH-radical-include
  • Science of the Total Environment, Cilt. 256, s. 1–9.
  • for oxidation, [58] USACHPPM.
  • Electrochemically
  • oxidant disinfection in the use of individual devices,
  • bin/GetTRDoc?AD=ADA453956
  • (Erişim Tarihi: 11.03.2016).
  • Petermarakis, G., Fountoukidis, E. 1990, Disinfection of water by electrochemical treatment, Water [60] Drees, K.P., Abbaszadegan, M., Maier, R.M. 2003. Comparative electrochemical inactivation of bacteria and bacteriophage, Water Research, Cilt. 37, s. 2291–2300. [61] Kerwick, M.I., Reddy,
  • S.M., Chamberlain, A.H.L., Holt, D.M. 2005. Electrochemical disinfection, an environmentally acceptable method
  • disinfection? Electrochimica Acta, Cilt. 50, s. 5270–5277.
  • water [62] Font-Ribera, L., Villanueva, C.M., Nieuwenhuijsen, M.J., Zock, J.P., Kogevinas, M., Henderson, J. 2011. Swimming
  • asthma, allergies, and lung function in the Avon longitudinal study of parents and children cohort, American Journal of Respiratory and Critical Care Medicine, Cilt. 183, s. 582-588.
  • attendance, [63] Yilmaz, I., Yanardağ, M., Birkan, B., Bumin, G. 2004. Effects of swimming training on physical fitness and water orientation in autism, Pediatrics International, Cilt. 46, s. 624-626.
  • Plewa, M.J., Wagner, E.D., Mitch, W.A.
  • mammalian cell cytotoxicity of water
  • disinfected recreational pools, Environmental
  • Technology, Cilt. 45, s. 4159–4165.
  • & [65] Panyakapo, M., Soontornchai, S., Paopuree, P. 2008. Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water, Journal of Environmental Sciences, Cilt. 20, s. 372–378.
  • Chen, K.C., Wang, Y.H. 2012. Control of disinfection by-product formation using
  • ozonebased advanced oxidation processes, Environmental Technology, Cilt. 33, s. 487–495.
  • Villanueva, C.M., Cantor, K.P., Grimalt, J.O., Malats, N., Silverman, D., Tardon, A., Garcia-Closas, R., Serra, C., Carrato, A., Castano- Vinyals, G. 2007. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools, American Journal of Epidemiology, Cilt. 165, s. 148–156. [68] Jorgenson, T.A., Meierhenry, E.F., Rushbrook, C.J., Bull, R.J., Robinson, M.
  • chloroform in drinking water to male Osborne–Mendel rats and female B6C3F1 mice, Fundamental and Applied Toxicology, Cilt. 5, s. 760–769. of
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi