Tb3+ ile Aktive Edilmiş TiO2 Fotolüminesans Nanomalzemelerin Sentezi ve Karakterizasyonu

Diğer fotokatalitik yarı iletkenlere kıyasla, titanyum dioksitin şimdiye dek hem temel araştırmalarda   hem de pratik uygulamalarda kullanılan en umut verici malzeme olduğu gösterilmiştir, çünkü daha yüksek bir foto reaktivite sergiler ve ucuz, toksik olmayan, kimyasal ve biyolojik olarak etkisiz ve  kararlıdır. Nadir toprak iyonları (RE3+), yüksek yoğunlukları ve yüksek ışık verimleri nedeniyle dopant elementler olarak tercih edilir. Tb3+ katkılı TiO2nanopartikülleri, geniş emme bandı, yüksek  emisyon yoğunluğu, uzun ömür, stabilite gibi birçok avantaj sunar. Ti02:%1 Tb3+ nanopartiküller sol-jel yöntemi ile 550oC’ de üretildi. Sentezlenen nanomalzemelerin partikül boyut analizi, XRD, DTA-TG, FTIR, SEM ve PL (photo luminescence) analizleri yapılmıştır. Anataz kristal yapısında, nanopartiküllerin boyutları 100 nm'nin altında ölçülmüş ve partiküllerin yer yer kümelendiği mikroyapıda gözlenmiştir. Nanopartiküller 275 nm'de uyarıldığında, 544 nm ve 585 nm'de Tb3+ iyonlarının yeşil emisyon bantları gözlenmiştir. Bu dalga uzunluğu, sırasıyla 5D4→ 7F5 and 5D4 → 7F4  elektronik geçişlerine bağlanmaktadır.

Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials

As compared to other semiconductor photocatalysts, titanium dioxide has so far been shown to be the  most promising material used for both fundamental research and practical applications, because it exhibits a higher photoreactivity and it is cheap, nontoxic, chemically and biologically inert, and photostable. Rare earth ions (RE3+) are preferred as dopant elements due to their high densities and  high light yields. Tb3+ doped TiO2nanoparticles offer several advantages such as broad absorption band, high emission intensity, long lifetime, stability. TiO2: 1%Tb3+ nanoparticles, were produced at 550 degrees by the sol-gel method. Particle size analysis, XRD, DTA-TG, FTIR, SEM, and PL analyzes  of  the synthesized nanomaterials were performed. In the anatase crystal structure, the dimensions of the nanoparticles were measured below 100 nm and were observed in the  microstructure where the  particles were clustered in places. When the nanoparticles were excited at 275 nm, green emission bands of Tb3+ ions at 544 nm and 585 nm were observed. This wavelength is attributed to electronic transitions 5D4→ 7F5 and 5D4 → 7F4, respectively.

___

  • [1] Dastjerdi R and Montazer M 2010. A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties Colloids Surfaces B Biointerfaces 79 5–18. DOI: 10.1016/j.colsurfb.2010.03.029
  • [2] Varghese O K, Paulose M, LaTempa T J, and Grimes C A 2009 High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels Nano Lett. 9 731–7. DOI: 10.1021/nl803258p
  • [3] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, and Bahnemann D W 2014 Understanding TiO2 photocatalysis: mechanisms and materials Chem. Rev. 114 9919–86. DOI: 10.1021/cr5001892
  • [4] Carp O, Huisman C L and Reller A 2004 Photoinduced reactivity of titanium dioxide Prog. solid-state Chem. 32 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  • [5] Zhang H and Banfield J F 2000 Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 J. Phys. Chem. B 104 3481–7. DOI: 10.1021/jp000499j
  • [6] Ahmed S. N. 2015. Physics and Engineering of Radiation Detection. Academic Press- ELSEVIER. 764s.
  • [7] Weber E M J, Dotsenko a V, Glebov L B, and Tsekhomsky V a 2003 Handbook of Optical Laser and Optical Science and Technology Series Physics and Chemistry of Photochromic Glasses vol 23.
  • [8] Kango S, Kalia S, Celli A, Njuguna J, Habibi Y and Kumar R 2013 Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review Prog. Polym. Sci. 38 1232–61. DOI: 10.1016/j.progpolymsci.2013.02.003
  • [9] Yang, T. T. T. (Ed.). 2012. Rare Earth Nanotechnology. CRC Press. 249s.
  • [10] Xu A-W, Gao Y and Liu H-Q 2002 The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles J. Catal. 207 151–7. DOI: 10.1006/jcat.2002.3539
  • [11] Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C and Honggang F 2004 The preparation and characterization of La-doped TiO2 nanoparticles and their photocatalytic activity J. Solid State Chem. 177 3375–82. DOI: 10.1016/j.jssc.2004.05.064
  • [12] Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F and Huang S 2010 Improved‐performance dye‐sensitized solar cells using Nb‐doped TiO2 electrodes: efficient electron injection and transfer Adv. Funct. Mater. 20 509–15. DOI: 10.1002/adfm.200901292
  • [13] Patra A, Friend C S, Kapoor R and Prasad P N 2003 Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites Chem. Mater. 15 3650–5. DOI: 10.1021/cm020897u
  • [14] Wang J, Polleux J, Lim J and Dunn B 2007 Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles J. Phys. Chem. C 111 14925–31. DOI: 10.1021/jp074464w
  • [15] Wang Y and Herron N 1991 Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties J. Phys. Chem. 95 525–32.
  • [16] Souza A S, Nunes L A, Felinto M, Brito H F and Malta O L 2015 On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the 7F5 level: The [Tb (tta) 3 (H2O) 2] case J. Lumin. 167 167–71. DOI: 10.1016/j.jlumin.2015.06.020
  • [17] Ðorđević V, Milićević B and Dramićanin M D 2017 Rare Earth‐Doped Anatase TiO2 Nanoparticles Titanium Dioxide (InTech). DOI: 10.5772/intechopen.68882
  • [18] Zheng C, Teng C P, Yang D-P, Lin M, Win K Y, Li Z and Ye E 2017 Fabrication of luminescent TiO2: Eu3+ and ZrO2: Tb3+ encapsulated PLGA microparticles for bioimaging application with enhanced biocompatibility Mater. Sci. Eng. C. DOI: 10.1016/j.msec.2017.10.005