Mikrodalga Kurutmanın Kaolen Numunesinin Bilyalı Değirmendeki Özgül Kırılma Hızını Artırıcı Etkisi

Bu çalışmada; Balıkesir/Düvertepe'den alınan kaolen numunesi üzerinde dar tane boyut gruplarında (-3350+2360 ?m, -2360+1700 ?m ve -1180+850 ?m) mikrodalga kurutmanın özgül kırılma hızına olan etkisini belirlemeye yönelik öğütme testleri yapılmıştır. Öğütme testleri Bond tipi bilyalı değirmende 70 dev/dak ile kuru olarak gerçekleştirilmiştir. Deneylerde kullanılan kaolen numunesi dar tane boyut gruplarında etüvde (105 oC' de 4 saat) ve mikrodalga fırında (850 W' da 12 dk) kurutulmuş ve kaba nem değeri (%1,5) öğütme öncesi numunelerden uzaklaştırılmıştır. Sonuçta; her üç dar tane boyut grubunda da, mikrodalga işleme tabi tutulmuş kaolen numunesinin konvansiyonel olarak etüvde kurutulmuş kaolen numunesine kıyasla kırılma hızlarında belirgin artış olduğu belirlenmiştir.

Improving the Specific Rates of Breakage of Kaolen in the Ball Mill By Microwave Drying

In this study, grinding tests were carried out to determine the effects of microwave drying on specific breakage rate in a ball mill. Kaolen samples, taken from Balikesir/Duvertepe, were prepared at mono size groups (3350+2360 ?m, -2360+1700 ?m and -1180+850 ?m) for grinding tests performed as dry in Bond ball mill which was run at 70 rpm. The kaolen samples prepared at mono size groups were dried in conventional oven (at 105 Co with 4 hours) and microwave oven (at 850 W with 12 minutes) in order to remove rough moisture value (1.5%) from the samples prior to grinding. As a result of the grinding tests it was determined that the specific rates of breakage at all three mono sized kaolen samples treated with microwave drying were faster than those of the untreated kaolen samples.

___

  • [1] Fuerstenau, D.W., De, A., Kapur, P.C., 2004. Linear and nonlinear particle breakage process in comminution systems, Int. J. Miner. Process., Cilt.74, s.317-327.
  • [2] Rhodes, M. 1998. Introduction to particle technology, Wiley, Chichester, UK.
  • [3] Özkan, A., Ünal, M., Kekeç, B. 2006. Mikrodalga ön işleminin traverten ve mermerin kırılma hızına ve ultrasonik özelliklerine etkisi, S.Ü. Müh. Mim. Fak. Derg., Cilt.21, s.143-152.
  • [4] Güngör, A. 1998. Grindability of Microwave-heated Ores, M.Sc. Thesis, The Graduate School of Natural and Applied Sciences of METU, Ankara.
  • [5] Whittles, D.N., Kingman, S.W., Reddish D.J. 2003. Application of numerical modeling for prediction of the influence of power density on microwave assisted breakage, Int. J. Miner. Process., Cilt.68, 71-91.
  • [6] Kingman, S.W., Jackson, K., Cumbane A., Bradshaw, S.M., Rowson, N.A. 2004. Greenwood R., Recent developments in microwave-assisted comminution, Int. J. Miner. Process., Cilt.74, , s.71-83.
  • [7] Kingman, S.W. 1999. The Influence of microwave radiation on the comminution and beneficiation of minerals. Ph.D. thesis. University of Birmingham, UK.
  • [8] Wang, Y., Forssberg, E., Svensson, M. 2000. Microwave assisted communition and liberation of minerals, Proceedings of the 8th Int. Min. Process. Symp., Balkema, Rotterdam, s.3-9.
  • [9] Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A. 1999. Synthesis of inorganic solids using microwaves, Chem. Mater., Cilt.11, s.882-895.
  • [10] Schiffmann, R.F. 1995. Commercializing Microwave Ssystems: Path to Success or Failure. Microwaves: Theory and Application in Material Processing, 111. In: Clark, D.E., Folz, D.C., Oda, SJ., Silberglit, R. (eds.), Ceramic Transc., Cilt.59.
  • [11] Haque, K.E. 1999. Microwave Energy for Mineral Treatment Processes-a Brief Review, International Journal of Mineral Processing, Cilt.57, s.1-24.
  • [12] Jones, D.A, Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.M. 2002. Microwave Heating Applications in Environmental Engineering-A review, Resources, Conservation and Recycling, Cilt.34, s.75- 90.
  • [13] Wang, Y., Forrsberg, E. 2000. Microwave assisted comminution and liberation of minerals, Mineral Processing on the Verge of the 21st Century, Özbayoğlu et al. (eds), Rotterdam.
  • [14] Lester, E., Kingman, S. 2004. The effect of microwave pre-heating on five different coals, Fuel, Cilt.83, s.1941- 1947.
  • [15] Kingman, S.W, Rowson, N.A. 2000. The Effect of Microwave Radiation on the Magnetic Properties of Minerals, Journal of Microwave Power and Electromagnetic Energy, Cilt.35, s.144- 150.
  • [16] Toraman, O.Y., Depci, T. 2007. Kömürde mikrodalga ile önişlem uygulamaları, Madencilik, Cilt.46, Sayı.3, s.43-53.
  • [17] Marland, S., Han, B., Merchant, A., Rowson, N. 2000. The effect of microwave radiation on coal grindability, Fuel, Cilt.79, s.1283-1288.
  • [18] Marland, S., Merchant, A., Rowson, N. 2001. Dielectric properties of coal, Fuel, Cilt.80, s.1839-1849.
  • [19] Elsamak, G.G., Oztas, N.A., Yürüm, Y. 2003. Chemical desulfurization of Turkish Cayirhan lignite with HI using microwave and thermal energy, Fuel, Cilt.82, s.531-537.
  • [20] Gümüşderelioğlu, M., Kaynak. G. 2012. Mikrodalgalar ve Uygulamaları, Bilim ve Teknik, Temmuz, s.38-42.
  • [21] Uslu, T., Atalay, U. 2003. Microwave heating of coal for enhanced magnetic removal of pyrite, Fuel Process Technol, Cilt.85, s.21-29.
  • [22] Kingman, S.W., Vorster, W., Rowson, NA. 2000. The influence of mineralogy on microwave assisted grinding, Miner Eng., Cilt.13, s.313-327.
  • [23] Olubambi, P.A., Potgieter, J.H., Hwang, J.Y., Ndlovu, S. 2007. Influence of microwave heating on the processing and dissolution behavior of low-grade complex sulphide ores, Hydrometallurgy, Cilt.89, s.127-135.
  • [24] Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S. 2005. Understanding microwave assisted breakage, Miner Eng., Cilt.18, s.659-669.
  • [25] Amankwah, R.K., Khan, A.U., Pickles, C.A., Yen, W.T. 2005. Improved grindability and gold liberation by microwave pretreatment of a freemilling gold ore, Miner Process Extr Metall, Cilt.114, s.30-36.
  • [26] Chen, T.T., Dutrizac, J.E., Haque, K.E., Wyslouzil, W., Kashyap, S. 1984. The relative transparency of minerals to microwave radiation, Can. Metall. Q., Cilt.23, s.349-51.
  • [27] Roberts, E.J. 1950. The probability theory of wet ball milling and its applications, Trans. SME/AIME, Cilt.187, s.267-272.
  • [28] Bowdish, F.K. 1960. Theorical and experimental studies of kinetics of grinding in a ball mill, Trans. SME/AIME, Cilt.217, s.194-202.
  • [29] Lynch, A.J., Whiten, W.J., Narayanan, S.S. 1986. Ball mill models: Their evaluation and present status, Advances in Mineral Processing, SME/AIME Pub., Littleton, CO., s.48-66.
  • [30] Klimpel, R.R., Austin, L.G. 1970. Determination of selection for breakage functions in the batch grinding equation by nonlinear optimization, Ind. Eng. Chem. Fundam, Cilt.9, s.230-237.
  • [31] Austin, L.G., Klimpel, R.R., Luckie, P.T. 1984. The process engineering of size reduction: ball milling, SME-AIME, New York, s.561.
  • [32] Anon a. 2014. mindat.org-the mineral and locality database, http://www.mindat.org/
  • [33] Akıncı, Ö. 1967. Seramik Killeri ve Jeolojisi, MTA, Ankara, Sayı.71, s.1-12.
  • [34] Çelik, H., Samanlı, S., Öney, Ö., Can, Y. 2015. Uşak Yöresi (Paçacıoğlu Köyü) Kaolenitik Kil Yataklarının Karakteristik Özelliklerinin Araştırılması, 9. Uluslararası Endüstriyel Hammaddeler Sempozyumu Bildiriler Kitabı, 14-15 Mayıs, İzmir-Türkiye, s.117-124.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi