Meyve İşleme Endüstrisi Atık Posalarından Aspergillus parasiticus ile Biyopigment Üretiminin Araştırılması

Pigmentlerin, renklendirme amacı ile kozmetik, tekstil, kağıt, ilaç ve gıda gibi birçok endüstride kullanıldıkları bilinmektedir. Özellikle Türkiye’de, çoğunlukla sağlığa zararlı olan sentetik pigmentler kullanılırken, dünya çapında biyopigment adı verilen doğal kaynaklardan üretilen pigmentlerin üretimine odaklanılmıştır. Biyopigmentlerin endüstiyel üretiminde maliyeti etkileyen en önemli etkenlerden biri substrattır. Ayrıca, endüstriyel üretimde, bir çok avantajının bulunması nedeni ile funguslardan biyopigment üretimi oldukça dikkat çekmektedir. Bu nedenlerle, bu çalışmada, Aspergillus parasiticus filamentli fungusu ile meyve işleme endüstrisi atıklarından biyopigment üretimi araştırılmıştır. Bu amaçla, çalışmanın birinci aşamasında, kara havuç, nar, elma ve pancar posası atıkları A. parasiticus ile katı hal fermantasyon koşullarında 5 gün boyunca fermente edilerek en yüksek pigment üretiminin gerçekleştirildiği atık posa belirlenmiştir. Çalışmanın ikinci aşamasında ise, en yüksek pigment üretiminin gerçekleştirildiği nar atık posasının optimum başlangıç pH’ı ve optimum inkübasyon süresi araştırılmıştır. Çalışma sonucunda, atık başlangıç pH’ı 6,5 ve inkübasyon süresinin 15. gününde en yüksek pigment üretiminin sarı renk olarak 14, 28 A/g olduğu belirlenmiştir. Üretilen biyopigmentin ayrıca %20,54 antioksidan aktivitesinin bulunduğu tespit edilmiştir. Sonuç olarak, nar atık posası atıklarının değerlendirilmesi ile A. parasiticus fungusundan değerli bir ürün olan sarı renkli biyopigmentin üretimi başarı ile gerçekleştirilmiştir.

___

  • [1] Barnett, J.R., Miller, S., Pearce, E. 2006. Colour and art: A brief history of pigments, Optics and Laser Technology, Cilt. 38, s. 445-453. DOI: 10.1016/j.optlastec.2005.06.005.
  • [2] Nigam, P.S., Luke, J.S. 2016. Food additives: production of microbial pigments and their antioxidant properties, Current Opinion in Food Science, Cilt. 7, s. 93–100. DOI: 10.1016/j.cofs.2016.02.004
  • [3] Panesar, R., Kaur, S., Panesar, P.S. 2015. Production of microbial pigments utilizing agro-industrial waste: a review, Current Opinion in Food Science, Cilt. 1, s. 70–76. DOI: 10.1016/j.cofs.2014.12.002
  • [4] Tuli, H.S., Chaudhary, P., Beniwal, V., Sharma, A.K. 2015. Microbial pigments as natural color sources: current trends and future perspectives, Journal of Food Science and Technology, Cilt. 52, s. 4669–4678. DOI: 10.1007/s13197-014-1601-6
  • [5] Aruldass, C.A., Dufossé, L., Ahmad, W.A. 2018. Current perspective of yellowish-orange pigments from microorganisms- a review, Journal of Cleaner Production, Cilt. 180, s. 168–182. DOI: 10.1016/j.jclepro.2018.01.093
  • [6] Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A. 2019. Fruit waste management by pigment production and utilization of residual as bioadsorbent, Journal of Environmental Management, Cilt. 244, s. 138–143. DOI: 10.1016/j.jenvman.2019.05.055
  • [7] Narsing Rao, M.P., Xiao, M., Li, W.-J., 2017. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications, Frontiers in Microbiolgy, Cilt. 8. DOI: doi.org/10.3389/fmicb.2017.01113
  • [8] Sánchez-Muñoz, S., Mariano-Silva, G., Leitea M. O., Mura, F. B., Verma, M. L., da Silva, S. S., Chandel, A. K. 2019. Production of fungal and bacterial pigments and their applications. ss 327-361. Verma, M. L., Chandel, A. K., ed. 2019. Biotechnological Production of Bioactive Compounds, Elsevier, Netherlands, 508s.
  • [9] Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S.A.S., Sutthiwong, N. 2014. Filamentous fungi are large-scale producers of pigments and colorants for the food industry, Current Opinion in Biotechnology, Cilt. 26, s. 56–61. DOI: 10.1016/j.copbio.2013.09.007
  • [10] Sanchis, V., Vinas, I., Roberts, I. N., Jeenes, D. J., Watson, A. J., Archer, D. B. 1994. A pyruvate decarboxylase gene from Aspergillus parasiticus, FEMS Microbiology Letters, Cilt. 117, s. 207-210. DOI: 10.1111/j.1574-6968.1994.tb06766.x
  • [11] Uz Zaman, A. 2014. Measuring waste management performance using the ‘Zero Waste Index’: the case of Adelaide, Australia, Journal of Cleaner Production, Cilt. 66, s. 407-419. DOI: doi.org/10.1016/j.jclepro.2013.10.032
  • [12] Karimi, S., Mahboobi Soofiani, N., Mahboubi, A., Taherzadeh, M. 2018. Use of Organic Wastes and Industrial By-Products to Produce Filamentous Fungi with Potential as Aqua-Feed Ingredients, Sustainability, Cilt. 10, s. 3296. DOI: 10.3390/su10093296
  • [13] Agboyibor, C., Kong, W.-B., Chen, D., Zhang, A.-M., Niu, S.-Q. 2018. Monascus pigments production, composition, bioactivity and its application: A review, Biocatalysis and Agricultural Biotechnology, Cilt. 16, s. 433–447. DOI: 10.1016/j.bcab.2018.09.012
  • [14] Babitha, S., Soccol, C.R., Pandey, A. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed, Bioresource Technology, Cilt. 98, s. 1554–1560. DOI: 10.1016/j.biortech.2006.06.005
  • [15] Johns, M.R., Stuart, D.M. 1991. Production of pigments byMonascus purpureus in solid culture, Journal of Industrial Microbiology, Cilt. 8, s. 23–28. DOI: 10.1007/BF01575587
  • [16] Kantifedaki, A., Kachrimanidou, V., Mallouchos, A., Papanikolaou, S., Koutinas, A.A. 2018. Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum, Journal Cleaner Production, Cilt. 185, s. 882–890. DOI: 10.1016/j.jclepro.2018.03.032
  • [17] De Carvalho, J.C., Cardoso, L.C., Ghiggi, V., Woiciechowski, A.L., de Souza Vandenberghe, L.P., Soccol, C.R. 2014. Microbial Pigments. s. 73–97. Brar, S. K., Dhillon, G. S., Fernandes M., ed. 2014. Biotransformation of Waste Biomass into High Value Biochemicals. Springer-Verlag New York, 504s.
  • [18] Gökşen, G., Durkan, Ö., Sayar, S., Ekiz, H.İ. 2018. Potential of date seeds as a functional food components, Journal of Food Measurement and Characterization, Cilt. 12, s.1904–1909. DOI: 10.1007/s11694-018-9804-6
  • [19] Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., Komaitis, M. 2008. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts, Food Chemistry, Cİlt. 107, s. 1120–1130. DOI: 10.1016/j.foodchem.2007.09.036
  • [20] Sankaran, S., Khanal, S.K., Jasti, N., Jin, B., Pometto, A.L., Van Leeuwen, J.H. 2010. Use of Filamentous Fungi for Wastewater Treatment and Production of High Value Fungal Byproducts: A Review, Critical Reviews in Environmental Science and Technology, Cilt. 40, s. 400–449. DOI: doi.org/10.1080/10643380802278943
  • [21] Caro, Y., Venkatachalam, M., Lebeau, J., Fouillaud, M., Dufossé, L., 2017. Pigments and Colorants from Filamentous Fungi, s. 499–568. Mérillon, J.M., Ramawat, K. G., ed. 2017. Fungal Metabolites. Springer International Publishing, Cham, Switzerland, 1001s.
  • [22] Silveira, S.T., Daroit, D.J., Sant'Anna, V., Brandelli, A. 2013. Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse, Food and Bioprocess Technology, Cilt. 6(4), s. 1007-1014. DOI: 10.1007/s11947-011-0710-8
  • [23] Arora, D.S., Chandra, P. 2011. Antioxidant Activity of Aspergillus fumigatus, ISRN Pharmacology, Cilt. 2011, s. 1–11. DOI: 10.5402/2011/619395
  • [24] Mukherjee, G., Mishra, T., Deshmukh, S. K. 2017. Fungal Pigments: An Overview, ss. 525-541. Satyanarayana, T., Deshmukh, S.K., Johri, B.N. ed. 2017. Developments in Fungal Biology and Applied Mycology, Springer Singapore, Singapore, 605s.
  • [25] Gmoser, R., Ferreira, J.A., Taherzadeh, M.J., Lennartsson, P.R. 2019. Post-treatment of Fungal Biomass to Enhance Pigment Production, Applied Biochemistry and Biotechnology, Cilt. 189, s. 160–174. DOI: 10.1007/s12010-019-02961-y
  • [26] Calvo, A.M., Wilson, R.A., Bok, J.W., Keller, N.P., 2002. Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews, Cilt. 66, s. 447–459. DOI: 10.1128/MMBR.66.3.447-459.2002
  • [27] Baker, S., Bennett, J. 2007. An Overview of the Genus Aspergillus, s. 3–13. Goldman, G. H., Osmani S. A., ed. 2007. The Aspergili: Genomics, Medical Aspects,Biotechnology, and Research Methods, CRC Press, USA, 576s.
  • [28] Teertstra, W.R., Tegelaar, M., Dijksterhuis, J., Golovina, E.A., Ohm, R.A., Wösten, H.A.B. 2017. Maturation of conidia on conidiophores of Aspergillus niger, Fungal Genetics and Biology, Cilt. 98, s. 61–70. DOI: 10.1016/j.fgb.2016.12.005
  • [29] Babitha, S., Soccol, C. R., Pandey, A. 2006. Jackfruit Seed – A Novel Substrate for the Production of Monascus Pigments through Solid-State Fermentation, Food Technology and Biotechnology, Cilt. 44 (4), s. 465–471.
  • [30] Padmavathi, T., Prabhudessai, T., 2013. A Solid Liquid State Culture Method to Stimulate Monascus Pigments by Intervention of Different Substrates, International Research Journal of Biological Sciences, Cilt. 2 (10), s. 22–29.
  • [31] Maqsoudlou, A., Assadpour, E., Mohebodini, H., Jafari, S. M. 2020. Improving the efficiency of natural antioxidant compounds via different nanocarriers, Advances in Colloid and Interface Science, 102122. DOI:10.1016/j.cis.2020.102122
  • [32] Duman, A., Ozgen, M., Dayisoylu, K., Erbil, N., Durgac, C. 2009. Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics, Molecules, Cilt. 14, s. 1808–1817. DOI: 10.3390/molecules14051808