KARIŞIM ORANININ KAŞMİR/PAMUK ÖRGÜ KUMAŞLARDA GEÇİRGENLİK ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

Bu çalışma kapsamında, iplikteki kaşmir/pamuk karışım oranının ve kumaş sıklığının örgü kumaşlarda geçirgenlik özelliklerine etkilerinin araştırılması hedeflenmiştir. İplik numuneleri 95-5% pamuk-kaşmir, 90-10% pamuk-kaşmir ve 85- 15% pamuk-kaşmir olmak üzere vortex iplik üretim sisteminde üretilmiştir. Daha sonra iplik numuneleri, gevşek, orta ve sıkı yapıda örgü kumaş üretmek amacıyla üç farklı ilmek uzunluğunda örülmüştür. Böylelikle, dokuz farklı kumaş numunesi elde edilmiştir. Konfor özellikleri olarak hava geçirgenliği ve su buharı geçirgenliği özellikleri test edilmiştir. Çalışma sonucunda, iplikte kaşmir oranının artmasıyla daha yüksek hava geçirgenliği ve daha düşük su buharı geçirgenliği değerlerinin elde edildiği gözlemlenmiştir.

INVESTIGATION OF THE EFFECTS OF BLEND RATIO ON PERMEABILITY PROPERTIES OF CASHMERE/COTTON KNITTED FABRICS

In the context of this study, it is intended to investigate the effects of cashmere/cotton ratio in yarn and fabric density on permeability properties of knitted fabrics. The yarn samples were produced with three different ratios as; 95-5% cotton-cashmere, 90-10% cotton-cashmere and 85-15% cotton-cashmere via vortex spinning system. Then, the yarn samples were knitted with three different loop length values for producing the fabrics as loose, medium and tight structures. In doing so, nine fabric samples were produced. Air permeability and water vapour permeability of these samples were tested as comfort related properties. As a result of the study, it is observed that higher air permeability and lower water vapour permeability values can be obtained by using higher cashmere ratio in yarn structure.

___

  • [1] Frank, R.R., 2001. Silk, mohair, cashmere and other luxury fibres, Woodhead Publishing Ltd.
  • [2] McGregor, B. A. and Postle, R. 2008. Mechanical properties of cashmere single jersey knitted fabrics blended with high and low crimp superfine merino wool, Textile Research Journal, Vol:78(5), pp:399-411.
  • [3] Oglakcioglu, N., Celik, P., Ute, T.B., Marmarali, A. and Kadoglu, H., 2009. Thermal comfort properties of angora rabbit/cotton fiber blended knitted fabrics. Textile Research Journal, Vol:79(10), pp:888-894.
  • [4] Naebe M. and McGregor B.A., 2013,”Comfort properties of superfine wool and wool/cashmere blend yarns and fabrics”, The Journal of The Textile Institute, Vol:104, No:6, pp:634– 640.
  • [5] McGregor, B.A., and Naebe, M., 2013. Effect of fibre, yarn and knitted fabric attributes associated with wool comfort properties, The Journal of The Textile Institute, Vol:104:6, pp:606-617.
  • [6] Li, L. and Zhou, W., 2006. Analysis on the pilling factors of cashmere knitted fabric, Fibers and Polymers, Vol.7(2), pp:213-216.
  • [7] BS EN ISO 2062:2009 Textiles. Yarns from packages. Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester.
  • [8] TS EN ISO 139: 2008 TextilesStandard atmospheres for conditioning and testing.
  • [9] TS EN 14971:2006 Textiles - Knitted fabrics - Determination of number of stitches per unit length and unit area.
  • [10] TS 7128 EN ISO 5048:1998- Textiles - Determination of thickness of textiles and textile products.
  • [11] TS EN 12127: 1999 TextilesFabrics - Determination of mass per unit area using small samples.
  • [12] TS EN 14970:2006 Textiles – Knitted fabrics - Determination of stitch length and yarn linear density in weft knitted fabrics.
  • [13] https://www.mathworks.com/hel p/images/ref/wiener2.html. 30.11.2016.
  • [14] Gonzalez, R.C., Woods, R. E., Eddins S.L., 2009. Digital Image Processing Using Matlab, Gatesmark Publishing, LLC.
  • [15] TS 391 EN ISO 9237:1999 TextilesDetermination of permeability of fabrics to air.
  • [16] BS 7209:1990 Specification for water vapour permeable apparel fabrics.
  • [17] Kılıc, M., Büyükbayraktar, R. B., Kilic, G. B., Aydın, S. and Eski, N. 2014. Comparing the packing densities of yarns spun by ring, compact and vortex spinning systems using image analysis method, Indian Journal of Fibre & Textile Research, Vol:39, pp:351- 357.
  • [18] Kumar, A., Ishtiaque, S.M., Salhota, K.R., 2006. Study of effect of spinning process variables on the packing density of ring, rotor and air-jet yarns using the taguchi method, AUTEX Research Journal, Vol:6(3), pp: 122-135.
  • [19] Behera, B.K., Militky, J., Mishra, R. and Kremenakova, D., 2012. Modeling of woven fabrics geometry and properties, In: Woven Fabrics, InTech, Available from: http://www.intechopen.com/book s/woven-fabrics/modeling-ofwoven-fabrics-geometry-andproperties.
  • [20] Lewin, M., 2007. Handbook of fiber chemistry, Third edition, Taylor & Francis Group Publication.
  • [21] Kuo-Lun, T., Jia-Shyan, S., ChingJung, C., Yu-Ling, L., Wei-Ming, L. 2002. CFD analysis onfluid flow through multifilament woven filter cloths, Separation Science and Technology, Vol:37:4, pp:799-821
  • [22] Carr, C.M., 1995. Chemistry of textile industry, Blackie Academic & Professional.
  • [23] Das, S. & Kothari, V.K., 2012. Moisture vapour transmission behavior of cotton fabrics, Indian Journal of Fiber & Textile Research, Vol:37, June, pp:151-156.