Çok Katmanlı Malzemelerde Açısal Renk Değişimleri ve Işıltı Etkilerinin Analizi

Çok katmanlı malzemeler, her bir katmanı farklı bir saçılım davranışına sahip olabilen ve katmanları içerisinde anizotropik davranışa sahip bileşenler barındıran malzeme yapılarıdır. Çok katmanlı malzemeler kozmetik, mücevher ve araba boyası endüstrilerinde yoğun olarak kullanılmaktadır. Ayrıca, bir çok gerçek dünya malzemesi kompozisyon içeriğinde açısal renk değişimi (goniochromatic) ve ışıltı (sparkle) etkilerine neden olan mikroskobik parçacıklar içerir. Bu sebeple, malzemenin gerçekçi görselleştirmesini sağlamak için malzemenin doğru temsil edilmesi büyük önem arz etmektedir ve bu doğrultuda bir çok model önerilmiştir. Bu makalede, çok katmanlı modern araba boyası malzemesi baz alınarak, malzemenin üzerinde görülen açısal renk değişimleri ve ışıltı etkilerini modelleyebilen çalışmaların analizi yapılmış ve deneysel karşılaştırmalar ile modellerin örnek malzemeleri doğru temsil etme kapasiteleri karşılaştırılmıştır. Ek olarak, çalışmamız içerisinde modellerin performans değerleri de karşılaştırılarak deneysel çalışmalarımız içerisinde bu bilgiler paylaşılmıştır. En son kısımda ise bir tablo halinde analizi yapılan çalışmaları içerdikleri karmaşık özel etkileri özetleyerek, okuyucuların bilgisine sunmaktayız.

An Analysis of Goniochromatic and Sparkle Effects on Multi-Layered Materials

Multi-layered materials are layered structures of composing anisotropic media where each layer may have a separate scattering behavior. Multi-layered materials are widely used in cosmetics, jewelry or automobile paint industries. In addition, many real world materials may consist of microscopic particles that can lead to goniochromatic and/or sparkling appearance. Therefore, the accurate representation of these effects is crucial for the photorealistic appearance of the material and many models have been proposed to overcome this problem. In this paper, we analyze various models proposed for representing goniochromatic and sparkle effects and run experiments on their capability of accurately simulating the final appearance of a multi-layered automobile paint structure. We also compare the performance of each model providing their computation times in the experiments. Finally, we provide a table for the readers which summarizes the complex special effects included in each model.

___

  • [1] Ershov, S., Kolchin, K., Myszkowski, K. 2001. Rendering pearlescent appearance based on paint‐composition modelling, Computer Graphics Forum, Vol. 20, No. 3, pp. 227-238. DOI: 10.1111/1467-8659.00515
  • [2] Rump, M., Müller, G., Sarlette, R., Koch, D., Klein, R. 2008. Photo-realistic Rendering of Metallic Car Paint from Image-Based Measurements, Computer Graphics Forum, Vol. 27, No. 2, pp. 527-536. DOI: 10.1111/j.1467-8659.2008.01150.x
  • [3] Belcour, L., Barla, P. 2017. A practical extension to microfacet theory for the modeling of varying iridescence, ACM Transactions on Graphics (TOG), Vol. 36, No. 4, pp. 1-14. DOI: 10.1145/3072959.3073620
  • [4] Guo, J., Chen, Y., Guo, Y., Pan, J. 2018. A Physically‐based Appearance Model for Special Effect Pigments, Computer Graphics Forum, Vol. 37, No. 4, pp. 67-76. DOI: 10.1111/cgf.13476
  • [5] Wang, B., Hašan, M., Holzschuch, N., Yan, L. Q. 2020. ACM Transactions on Graphics (TOG), Vol. 39, No. 5, pp. 1-12. DOI: 10.1145/3406836
  • [6] Ergun, S., Önel, S., Ozturk, A. 2016. A general micro-flake model for predicting the appearance of car paint, Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, June 22-25, Dublin, 65-71.
  • [7] Jakob, W., Arbree, A., Moon, J. T., Bala, K., Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure, ACM Transactions on Graphics (TOG), Vol. 29, No. 4, pp. 1-13. DOI: 10.1145/1778765.1778790
  • [8] Jakob, W., d'Eon, E., Jakob, O., Marschner, S. 2014. A comprehensive framework for rendering layered materials, ACM Transactions on Graphics (TOG), Vol. 33, No. 4, pp. 1-14. DOI: 10.1145/2601097.2601139
  • [9] Belcour, L. 2018. Efficient rendering of layered materials using an atomic decomposition with statistical operators, ACM Transactions on Graphics (TOG), Vol. 37, No. 4, pp. 1-15. DOI: 10.1145/3197517.3201289
  • [10] Zeltner, T., Jakob, W. 2018. The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance, ACM Transactions on Graphics (TOG), Vol. 37, No. 4, pp. 1-14. DOI: 10.1145/3197517.3201321
  • [11] Yamaguchi, T., Yatagawa, T., Tokuyoshi, Y., Morishima, S. 2020. Real-time rendering of layered materials with anisotropic normal distributions, Computational Visual Media, Vol. 6, No. 1, pp. 29-36. DOI: 10.1007/s41095-019-0154-z
  • [12] Werner, S., Velinov, Z., Jakob, W., Hullin, M. B. 2017. Scratch Iridescence: Wave-Optical Rendering of Diffractive Surface Structure, ACM Transactions on Graphics (TOG), Vol. 36, No. 6, pp. 1-14, DOI: 10.1145/3130800.3130840
  • [13] Yan, L. Q., Hašan, M., Walter, B., Marschner, S., Ramamoorthi, R. 2018. Rendering Specular Microgeometry with Wave Optics, ACM Transactions on Graphics (TOG), Vol. 37, No. 4, pp. 1-10, DOI: 10.1145/3197517.3201351
  • [14] Guillén, I., Marco, J., Gutierrez, D., Jakob, W., Jarabo, A. 2020. A General Framework for Pearlescent Materials, ACM Transactions on Graphics (TOG), Vol. 39, No. 6, pp. 1-15, DOI: 10.1145/3414685.3417782
  • [15] Yan, L. Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., Ramamoorthi, R. 2014. Rendering Glints on High-Resolution Normal-Mapped Specular Surfaces, ACM Transactions on Graphics (TOG), Vol. 33, No. 4, pp. 1-9, DOI: 10.1145/2601097.2601155
  • [16] Yan, L. Q., Hašan, M., Marschner, S., Ramamoorthi, R. 2016. Position-Normal Distributions for Efficient Rendering of Specular Microstructure, ACM Transactions on Graphics (TOG), Vol. 35, No. 4, pp. 1-9, DOI: 10.1145/2897824.2925915
  • [17] Jakob, W., Hašan, M., Yan, L. Q., Lawrence, J., Ramamoorthi, R., Marschner, S. 2014. Discrete Stochastic Microfacet Models, ACM Transactions on Graphics (TOG), Vol. 33, No. 4, pp. 1-10, DOI: 10.1145/2601097.2601186
  • [18] Guo, Y., Hašan, M., Zhao, S. 2018. Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs, ACM Transactions on Graphics (TOG), Vol. 37, No. 6, pp. 1-14. DOI: 10.1145/3272127.3275053
  • [19] Jakob, W. 2010. Mitsuba Renderer. http://www.mitsuba-renderer.org (Access Date: 18.09.2021).
  • [20] Jakob, W. 2015. Layerlab: A Computational Toolbox for Layered Materials. SIGGRAPH 2015 Courses, ACM, New York.
  • [21] Richardson, I. E. 2002. Video Codec Design: Developing Image and Video Compression Systems. John Wiley & Sons, Inc., New York, 314s.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi