Analytical Approach of Brillouin Fiber Amplifier Gain up to 2 km Long Fibers

In order to obtain analytical gain expression in Brillouin optical Fiber Amplifiers (BFAs), coupled intensity equations describing the interaction of pump and stokes waves must be solved simultaneously. For long optical fibers, although fiber loss is responsible for the pump depletion and nonnegligible effect, for short optical fibers less than 2 km, its effect can be discarded. In this paper, we provide an accurate analytic expression for the BFA gain for fiber lengths less than 2 km by discarding the optical fiber loss and show results of experimental validation.

2 km’ye kadar olan Brillouin Fiber Kuvvetlendiricilerde Kazancın analitik ifadesinin elde edilmesi

Brillouin Fiber Kuvvetlendirici (BFK) kazancının analitik ifadesini elde etmek için, pompa ve Stokes dalgalarının etkileşimini tanımlayan denklemlerin çözümü gerekmektedir. Uzun optik fiberler için fiber kaybı, pompa lazerini tüketmesi nedeniyle ihmal edilemez bir parametre olmasına rağmen, 2 km'den kısa BFK’ de etkisi ihmal edilebilir. Bu makalede, optik fiber kaybı ihmal edilerek, 2 km'den daha kısa optik fiberler için BFK kazancı analitik olarak ifade edilerek, bu ifadenin doğruluğu deneysel olarak gösterilmiştir.

___

[1] Olsson, N. A., Van der Ziel, J. P. 1986. Cancellation of fiber loss by semiconductor laser pumped Brillouin amplification at 1.5 μm: Applied Physics Letters, vol. 48, p. 1329–1330. DOI: 10.1063/1.96950

[2] Tkach, R. W., Chraplyvy, A. R. and Derosier, R. M. 1989. Performance of a WDM network based on stimulated Brillouin scattering: IEEE Photonics Technology Letters, vol.1, pp. 111–113. DOI: 10.1109/68.34758

[3] Song, K. Y., Herráez, M. G., and Thévenaz, L. 2005 Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering: Optics Express, vol. 13, pp. 82-88.
DOI: 10.1364/OPEX.13.000082

[4] Culverhouse, D. Frahi, F. Pannell, C. N. and Jackson, D. A. 1989. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensor: Electronics Letters. vol. 25, pp. 913–915. DOI: 10.1049/el:19890612

[5] Gokhan, F. S. 2011. Moderate-gain Brillouin amplification: an analytical solution below pump threshold: Optics Communications, vol. 284, pp. 4869–4873. DOI: 10.1016/j.optcom.2011.06.054

[6] Kobyakov, A. Sauer, M. and Chowdhury, D. 2010. Stimulated Brillouin scattering in optical fibers: Advances in Optics and Photonics, vol. 2, pp. 1–59. DOI: 10.1364/AOP.2.000001

[7] Boyd, R.W. 2007. Nonlinear Optics, 3 rd edition. Academic Press, Rochester, New York, chap.9. pp. 442-443

[8] Zel’dovich, B. Ya., Pilipetsky, N. F. and Shkunov, V. V. (Springer-Verlag, 1985). Principles of Phase 
Conjugation. chap. 2. 


[9] Daniel Richardson, Bruno Salvy, John Shackell, Joris Van Der Hoeven. 1996. Asymptotic Expansions of exp-log Functions. [Research Report] RR-2859, INRIA.

[10] Agrawal, G. P. 2001. Nonlinear Fiber Optics, 3rd edition, Academic Press, New York, chap.9. 
p. 360

[11] Boyd, R.W. 2007. Nonlinear Optics, 3rd edition. Academic Press, Rochester, New York, Chap.9. 
p. 463

[12] Chen, L. and Bao, X. 1998. Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber: Optics Communications, vol. 152, pp. 65-70. DOI: 10.1016/S0030-4018(98)00147-3

[13] Gökhan, F. S., Göktaş, H. and Sorger, V. J. 2018. Analytical approach of Brillouin amplification over threshold: Applied Optics, vol. 57, pp. 607-611. DOI: 10.1364/AO.57.000607

[14] Gökhan, F. S., Göktaş, H. 2019. Analytical approach to calculate the gain of Brillouin fiber amplifiers in the regime of pump depletion: Applied Optics, vol. 58, pp. 7628-7635. DOI: 10.1364/AO.58.007628
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi