ALÜMİNYUM, KAĞIT VE CAM ELYAF PETEK YAPILI KOMPOZİTLERİN ÜRETİM TEKNİKLERİ VE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI

Petekli kompozit yapılar, özellikle çarpma sonucu ortaya çıkan enerjinin absorbe edildiği yüksek mekanik dayanım gerektiren konstrüksiyonlarda kullanılır. Oldukça hafif sistemler elde etmek için, sandviç yapıların iç ve dış tabakaları arasına bu petekli yapılar yerleştirilir. Tabakalar arasına petekli yapının yerleştirilmesi, yapının atalet momentinin ve eğilme dayanımının artmasını sağlar. Ondüle edilmiş plakaların birleştirilmesi sonucu elde edilen petek yapılı hücreler, sandviç yapıların iç (dolgu) malzemesini oluşturur. Bu çalışmada, alüminyum folyo (ticari alüminyum, 3000 serisi alüminyum alaşımı), polyerster reçine emdirilmiş kağıt ve cam elyaf kullanılmıştır. Deneyler sonucu petek yapılı kompozitlerin, maksimum dayanım, kırılma ve deformasyon değerleri ve enerji absorbe özellikleri basma ve çarpma yükleri altında elde edilmiştir. Petek yapılı hücrelerin farklı hücre boyutu ve malzeme seçimi birlikte ele alınarak, optimum değerler bulunmuştur. Özellikle uzay, otomotiv ve savunma sanayinde pratik uygulamalar için çeşitli ipuçları sunulmuştur

PRODUCTION TECHNICS OF HONEYCOMB FROM ALUMINUM, GLASS FIBER AND PAPER COMPOSITES AND INVESTIGATION OF THE MECHANICAL PROPERTIES

Honeycomb composite materials are used in the high strength mechanical structures especially in the case of energy absorption that is revealed after the impact of the parts. They are being inserted to laminates of the inner and the outer wall sandwich structures in order to obtain fairly lighter systems. Substituting of the honeycombs between laminae is lead to increase the moment of inertia and resulting increase to the bending strength of the structure. They are generally used for internal material that is obtained by combining corrugated plates in sandwich constructions. In this work, aluminium folio materials (commercial grade aluminium or 3000 series aluminium alloy) and polyester sucked glass fiber and paper are used. After testing, the maximum strengths, fracture and deformations values and the energy absorption ability are obtained under compression and crush loads . The optimisation will be obtained together with different choice of material and size of the honeycomb cells. It is presented various clues for the practical applications especially in aerospace, automotive and defence industry.

___

  • Alteneder A.W., Renn D.J., Seferis J.C.; Curran R.N. (1998): “Processing and Characterisation Studies of Honeycomb Composite Structure”, Advanced Materials: Performance Through Technology Insertion Int. SAMPE-Symposium and Exhibition, USA, V.38, N.1, p.1034-1067.
  • Bitzer N. (1980): “Honeycomb Sandwich Design and Testing”, PhD thesis, Century University, Los Angeles, USA.
  • Changqing, M., Xing Z. (1998): “Mechanical Analysis for Debonding Problem of Honeycomb Sandwich Beams”, Beijing-Hankong-Hangtion-Daxue-Xuebao Journal of Beijing University of Aeronautics and Astronautics, V.24, N.1, p.54-57.
  • Glass D.E., Raman V.V., Venkat V.S., Sankaran N. (1999): “Graphite/epoxy Honeycomb Core Sandwich Permeability under Mechanical Loads”, Composite-Structures, V.44, N. 4, p.253-261.
  • Hexcel Corporation (2000): “Mechanical Properties of Hexcel Honeycomb Materials”, Tech. Report. No. TSB 120, TSB 122, USA.
  • Jianke Z., Youngfu J., Zhihua L. (1998): “Mechanical Properties of Honeycomb Sandwich Panels at Low Temperatures”, Proceedings of the Conference on Cryogenics and Refrigeration, Paris, p.470-473.
  • Kenjiro K., Sohei S., Gilles K. (1995): “Influence of Water on Mechanical Properties and Fracture Mechanism of FRP/aramid Honeycomb Core Sandwich Material”, Zairyo Journal of the Society of Materials Science Japan, V.44, N. 505, p. 1273-1278.
  • Martin C.F., Seferis J.C., Wilhelm M.A. (1996): “Frictional Resistance of Thermoset Prepregs and its Influence on Honeycomb Composite Processing”, Composites, Part A 27 A, p. 943-951.
  • Su K.D., Rock L.J. (1997): “Compressive Mechanical Properties of the Nomex/thermoset Honeycomb cores”, Polymers for Advanced Technologies, V.8, N.1, p.1-7.
  • Toshio O., Noriomi O. (1993): “Mechanical Properties of Honeycomb Prepared from Aromatic Polyimid Film”,. Journal of Applied Polymer Science, V.48, N.10, p.1739- 1748.
  • Winsor J.R. (1992): “Analysis and Optimisation of Composite Honeycomb Sandwich Cylindrical Shells”, Proceedings of the 7th Technical Conference of the American Society for Composites, University Park, PA, USA, p.576-586.
  • Yasutaka T., Kiyoshi T, Yoshiteru N. (1996): “Analysis of Mechanical Properties of Aramid Honeycomb Core (Investigation on the Compression Strength and the Shear Modulus), Transaction of the Japan Society of Mechanical Engineers, Part A., V.61, N.587, p.1608- 1614.
  • Yeh W.N., Wu Y.E. (1991): “Enhancement of Buckling Characteristics for Sandwich Structure with Fiber Reinforced Composite Skins and Core Made of Aluminium Honeycomb and Polyurethane Foam”, Theory Appl. Fracture Mech., V.15, N.1, p.63-74.