AISI M2 Takım Çeliğinin Mikroyapısı ve Mekanik Davranışları Üzerine Derin Kriyojenik İşlemin ve Temperlemenin Etkisi

Bu çalışmada, AISI M2 takım çeliğinin farklı ısıl işlemler sonucunda mikroyapı ve tribolojik özelliklerindeki değişimi incelenmiştir. Bu amaçla, su verme + temperleme, s u v erme + d erin kriyojenik işlem + temperleme, su verme + temperleme + derin kriyojenik işlem + temperleme şeklinde üç farklı ısıl işlem prosesi uygulanmıştır. Mikroyapı sonuçlarına göre derin kriyojenik işlem sonrasında mikroyapıdaki karbür tanelerinin boyut ve dağılımlarında iyileşme olduğu belirlenmiştir. Üç farklı ısıl işlem sonrasında elde edilen sertlik değerlerinde ise belirgin farklılıklara rastlanmamıştır. Ayrıca triboloji testleri sonrasında ise kriyojenik işlemli malzemelerin aşınma oranlarında ve sürtünme katsayılarında düşüş gözlenmiştir. Kriyojenik işlemden hemen önce uygulanan temperleme işleminin sürtünme katsayısını düşürücü etkisi olduğu belirlenmiştir.

Effect of Deep Cryogenic Treatment and Tempering on Microstructure and Mechanical Behaviors of AISI M2 Tool Steel

In this study, the change of AISI M2 tool steel in microstructure and tribological properties as a result of different heat treatments were investigated. For this purpose, three different heat treatment processes were applied: quenching + tempering, quenching + deep cryogenic treatment + tempering, quenching + tempering + deep cryogenic treatment + tempering. According to the microstructure results, after deep cryogenic heat treatment, it was determined that the size and distribution of the carbide grains in the structure improved. No significant differences were observed in the hardness values obtained after three different heat treatments. In addition, according to the results of tribology tests, a d ecrease i n w ear r ates a nd f riction c oefficients of cryogenic heat treated materials was observed. It was determined that the tempering process applied just before the cryogenic process reduces the coefficient of friction.

___

  • [1] Godec, M., Vecko Pirtovsek, T., Setina Batic, B., McGuiness, P., Burja, L., Podgornik, B. 2015. Surface and Bulk Carbide Transformations in High-Speed Steel. Scientific Reports, Cilt. 5, s. 16202. DOI: 10.1038/srep16202
  • [2] Gill, S. S., Singh, R., Singh, J., Singh, H. 2012. Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M 2 H SS t urning t ool for estimation of flank wear, Expert Systems with Applications, Cilt. 39, s. 4171-4180. DOI: 10.1016/j.eswa.2011.09.117
  • [3] Öteyaka, M.Ö., Çakır, F.H., Çelik, O.N. 2020. Influence of shallow and deep cryogenic treatment on the corrosion behavior of Ti6Al4V alloy in isotonic solution, Materials and Corrosion, s. 1–10. DOI: 10.1002/maco.201911378
  • [4] Özer, M. 2019. AISI H13 Takım Çeliğine Uygulanan Derin Kriyojenik İşlem ve Temperleme Isıl İşleminin Mikroyapı, Sertlik ve Darbe Enerjisine Etkisi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, Cilt. 7, s. 688-699. DOI: 10.29109/gujsc.603355
  • [5] Çiçek, A., Kıvak, T., Uygur, I., Ekici, E., Turgut, Y. 2011. Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels, The International Journal of Advanced Manufacturing Technology, Cilt. 60, s. 65-73. DOI: 10.1007/s00170- 011-3616-8
  • [6] Chopra, S. A., Sargade, V.G. 2015. Metallurgy behind the Cryogenic Treatment of Cutting Tools: An Overview, Materials Today: Proceedings, Cilt. 2, s. 1814-1824. DOI: 10.1016/j.matpr.2015.07.119
  • [7] Shen, Y. F., Qiu, L.N., Sun, X., Zuo, L., Liaw, P.K., Raabe, D. 2015. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIPassisted steels, Materials Science and Engineering: A, Cilt. 636 s. 551-564. DOI: 10.1016/j.msea.2015.04.030
  • [8] Totten, G. E. 2006. Steel Heat Treatment: Metallurgy and Technologies: Taylor & Francis. Boca Raton, 848s.
  • [9] Serna, M.M., Jesus, E.R.B., Galego, E., Martinez, L.G., Corrêa, H.P.S., Rossi, J. L. 2006. An Overview of the Microstructures Present in High-Speed Steel - Carbides Crystallography, Materials Science Forum, Cilt. 530-531, s. 48-52. DOI: 10.4028/www.scientific.net/MSF.530-531.48
  • [10] Li, J., Yan, X., Liang, X., Guo, H., Li, D.Y. 2017. Influence of different cryogenic treatments on hightemperature wear behavior of M2 steel, Wear, Cilt. 376-377, s. 1112-1121. DOI: 10.1016/j.wear.2016.11.041
  • [11] Oppenkowski, A., Weber, S., Theisen, W. 2010. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels, Journal of Materials Processing Technology, Cilt. 210, s. 1949-1955. DOI: 10.1016/j.jmatprotec.2010.07.007
  • [12] Hossain, R., Pahlevani, F., Sahajwalla, V. 2019. Stability of retained austenite in high carbon steel – Effect of post-tempering heat treatment, Materials Characterization, Cilt. 149, s. 239-247. DOI: 10.1016/j.matchar.2019.01.034
  • [13] Das, D., Dutta, A.K., Ray, K.K. 2010. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness, Materials Science and Engineering: A, Cilt. 527, s. 2182-2193. DOI: 10.1016/j.msea.2009.10.070
  • [14] Pan, F.-s., Wang, W.-q., Tang, A.-t., Wu, L.-z., Liu, T.-t., Cheng, R.-j. 2011. Phase transformation refinement of coarse primary carbides in M2 high speed steel, Progress in Natural Science: Materials International, Cilt. 21, s. 180-186.
  • [15] Zhou, X.F., Fang, F., Jiang, J.Q., Zhu, W.L., Xu, H.X. 2013. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment, Materials Science and Technology, Cilt. 30, s. 116-122. DOI: 10.1179/1743284713Y.0000000338
  • [16] Zhou, B., Shen, Y., Chen, J., Cui, Z.-s. 2011. Breakdown Behavior of Eutectic Carbide in High Speed Steel During Hot Compression, Journal of Iron and Steel Research, International, Cilt. 18, s. 41-48.
  • [17] Peng, H., Hu, L., Ngai, T., Li, L., Zhang, X., Xie, H., Gong, W. 2018. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPagrade PM high-speed steel, Materials Science and Engineering: A, Cilt. 719, s. 21-26. DOI: 10.1016/j.msea.2018.02.010
  • [18] Ghasemi-Nanesa, H., Jahazi, M. 2014. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel, Materials Science and Engineering: A, Cilt. 598, s. 413-419. DOI: 10.1016/j.msea.2014.01.065
  • [19] Yan, X.G., Li, D.Y. 2013. E ffects o f t he s ub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel, Wear, Cilt. 302, s. 854-862. DOI: 10.1016/j.wear.2012.12.037
  • [20] Versaci, R.A., 1988. Stability of carbides in M2 high speed steel, Journal of Materials Science Letters, Cilt. 7, s. 273–275. DOI: 10.1007/BF01730195
  • [21] Li, H., Tong, W., Cui, J., Zhang, H., Chen, L., Zuo, L. 2016. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel, Materials Science and Engineering: A, Cilt. 662, s. 356-362. DOI: 10.1016/j.msea.2016.03.039
  • [22] Serna, M.M., Rossi, J.L. 2009. MC complex carbide in AISI M2 high-speed steel, Materials Letters, Cilt. 63, s. 691-693. DOI: 10.1016/j.matlet.2008.11.035
  • [23] Firouzdor, V., Nejati, E., Khomamizadeh, F. 2008. Effect of deep cryogenic treatment on wear resistance and t ool l ife o f M 2 H SS d rill, Journal of Materials Processing Technology, Cilt. 206, s. 467- 472. DOI: 10.1016/j.jmatprotec.2007.12.072
  • [24] Grairia, A., Beliardouh, N.E., Zahzouh, M., Nouveau, C., Besnard, A. 2018. Dry sliding wear investigation on tungsten carbide particles reinforced iron matrix composites, Materials Research Express, Cilt. 5, s. 116528. DOI: 10.1088/2053-1591/aade07
  • [25] Das, D., Dutta, A.K., Ray, K. K. 2009. Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel, Wear, Cilt. 267, s. 1371-1380. DOI: 10.1016/j.wear.2008.12.051
  • [26] Zhang, M., Chen, C., Qin, L., Yan, K., Cheng, G., Jing, H., Zou, T. 2017. Laser additive manufacturing of M2 high-speed steel, Materials Science and Technology, Cilt. 34, s. 69-78. DOI: 10.1080/02670836.2017.1355584
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi