BILDIRCIN (COTURNIX COTURNIX JAPONICA) YUMURTALARINA İLİŞKİN BAZI ÖZELLİKLER

Bıldırcın (Coturnix coturnix japonica) yumurtaları, çeşitli bileşenleri açısından incelenmiş, elde edilen değerlerin gerek daha önceki çalışmalarda elde edilen verilerle gerekse literatürdeki çeşitli bağıntılardan elde edilen sonuçlarla uyumlu olduğu görülmüştür.

Some PropertIes of QuaIl (Coturnix Coturnix Japonica) Eggs

Eggs of quail (Coturnix coturnix japonica) were investigated with regard to their several components. The results are compatible with that of from earlier studies and from some equations in the literature, as well.

___

  • Altan, Ö. (22-24 Ekim 1995). Kuluçkalık yumurta özelliklerinin kulukça sonuçları ve civciv gelisimi üzerine etkileri. VI. Hayvancılık ve Besleme Sempozyumu, Konya.
  • Altan, Ö., Oguz, I., Settar, P. (1995). Japon bıldırcınlarında yumurta agırlıgı ile özgül agırlıgının kulukça özelliklerine etkileri. Tr. J. of Agriculture and Forestry 19, 219-222.
  • Altan, Ö., Oğuz, İ., Akbaş, Y. (1998). Japon Bıldırcınlarında (Coturnix coturnix japonica) Canlı Ağırlık Yönünde Yapılan Seleksiyonun ve Yaşın Yumurta Özelliklerine Etkileri. Tr. J. of Veterinary & Animal Sciences. 22, 467–473.
  • Ar, A. & Yom-Tov, Y. (1978). The evolution of parental care in birds. Evolution 32, 655-669
  • Ar, A. & Rahn, H. (1980). Water in the avian egg: Overall budget of incubation. Amer. Zool. 20, 373-384.
  • Ar, A., Arieli, B., Belinsky, A. & Yom-Tov, Y. (1987). Energy in avian eggs and hatchlings: Utilization and transfer. J. Exp. Zool. Suppl. 1, 151-164.
  • Ardia, D.R., Wasson, M.F. & Winkler, D.W. (2006). Individual quality and food availability determine yolk and egg mass and egg composition in tree swallows Tachycineta bicolor. J. Avian Biol. 37(3), 252-259.
  • Badzinski, S.S., Ankney, C.D., Leafloor, J.O. & Abraham, K.F. (2002). Egg size as a predictor of nutrient composition of eggs and neonates of Canada Geese (Branta canadensis interior) and Lesser Snow Geese (Chen caerulescens caerulescens). Can. J. Zool. 80, 333–341.
  • Bucher, T.L. (1987). Patterns in the mass-independent energetics of avian development. J. Exp. Zool. Suppl. 1, 139-150.
  • Carey, C., Rahn, H. & Parisi, P. (1980). Calories, water, lipid and yolk in avian eggs. Condor 82, 335-343.
  • Ferrari, R.P., Martinelli, R. & Saino, N. (2006). Differential effects of egg albumen content on barn swallow nestlings in relation to hatch order. J. Evol. Biol., 19, 981-993.
  • Hoyt, D.F. (1979). Practical methods of estimating volume and fresh weight of bird eggs. Auk, 96, 73-77.
  • Hoyt, D.F., Board, R.G., Rahn, H. & Paganelli, C.V. (1979). The eggs of the Anatidae: Conductance, pore structure and metabolism. Physiol. Zool., 52, 438-450.
  • Hussein, S.M., Harms, R.H. & Janky, D.M. (1993). Effects of age on the yolk to albumen ratio in chicken eggs. Poultry Sci. 72, 594-597.
  • Martins, P.A. & Arnold, T.W. (1991). Relationships among fresh mass, incubation time and water loss in Japanese Quail Eggs. Condor, 93, 28-37.
  • Paganelli, C.V., Olszowka, A. & Ar, A. (1974). The avian egg: Surface area, volume and density. Condor, 76, 319-325.
  • Prinzinger, R., Hinninger, Ch. & Schmidt, M. (1991). Embryogenese des Energiestoffwechsels bei altricialen, semipraecocialen und praecocialen Vögeln. Verh. Dtsch. Zool. Ges., 81, 419-420.
  • Rahn, H. & Ar, A. (1980). Gas exchange of the avian egg: Time, structure and function. Amer. Zool., 20, 477-484.
  • Rahn, H. & Paganelli, C.V. (1988a). Length, breadth, and elongation of avian eggs from the tables of Schönwetter. J. Orn., 129, 366-369.
  • Rahn, H. & Paganelli, C.V. (1988b). Frequency distribution of egg mass of passerine and non- passerine birds based on Schönwetter's tables. J. Orn., 129, 236-239.
  • Rahn, H. & Paganelli, C.V. (1989a). Shell mass, thickness and density of avian eggs derived from the tables of Schönwetter. J. Orn., 130, 59-68.
  • Rahn, H. & Paganelli, C.V. (1989b). The initial density of avian eggs derived from the tables of Schönwetter. J. Orn., 130, 207-216.
  • Rahn, H. & Paganelli, C.V. (1990). Gas fluxes in avian eggs: Driving forces and the pathway for exchange. Comp. Biochem. Physiol., 95A, 1-15.
  • Ricklefs, R.E. (1977). Composition of eggs of several bird species. Auk, 94, 350-356.
  • Ricklefs, R.E., Hahn, D.C. & Montevecchi, W.A. (1978). The relationship between egg size and chick size in the Laughing gull and Japanese quail. Auk, 95, 135-144.
  • Roca, P., Sáinz, F, González, M. & Alemany, M. (1984). Structure and composition of the eggs from several avian species. Comp. Biochem. Physiol., 77A, 307-310.
  • Saatçi, M., Yardımcı, M., Kaya, İ. & Poyraz, Ö. (2002). Kars İli Kazlarında Bazı Yumurta Özellikleri. Lalahan Hay. Araşt. Enst. Derg., 42(2), 37-45.
  • Soliman, F.N.K., Rizk, R.E. & Brake J. (1994). Relationship between shell porosity, shell thickness, egg weight loss, and embryonic development in Japanese Quail eggs. Poultry Science, 73, 1607-1611.
  • Sotherland, P.R. & Rahn, H. (1987). On the composition of bird eggs. Condor, 89, 48-65.
  • Vleck, C.M,. Hoyt D.F & Vleck D. (1979). Metabolism of avian embryos: Patterns in altricial and precocial birds. Physiol. Zool., 52, 363-377.
  • Vleck, C. M. & Vleck, D. (1987). Metabolism and energetics of avian embryos. J. Exp. Zool. Suppl., 1, 111- 125.
  • Weimer, V. & Schmidt, K. H. (1998). Untersuchungen zur Eiqualität bei der Kohlmeise (Parus major) in Abhängigkeit von der Bodenbeschaffenheit. J. Ornithol., 139(1), 3-9.