Some generalised integral inequalities for bidimensional preinvex stochastic processes

Some generalised integral inequalities for bidimensional preinvex stochastic processes

In this study, we generalize some integral inequalities for bidimensional preinvex stochasticprocesses. The main results consist of two parts. In the first part, we obtain a generalization ofH-H type integral inequality for bidimensional preinvex stochastic processes. In the secondpart, we derive a generalization of Ostrowski type integral inequality for bidimensionalpreinvex stochastic processes. For this reason, we use mean-square integrable preinvexstochastic processes and verify generalization of H-H type integral inequality and Ostrowskitype integral inequality for preinvex stochastic processes on the real, respectively.

___

  • [1] Hadamard J., Étude sur les propriétés des fonctions entières et en particulier d.une function considerée par Riemann, J. Math Pures Appl., 58 (1893) 171-215.
  • [2] Alomari M.W., A generalization of Hermite-Hadamard’s inequality, Krag. J. Math., 41(2) (2017) 313–328.
  • [3] Dragomir S.S., On Hadamard’s inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 4 (2001) 775–788.
  • [4] Nwaeze E.R., Generalized Hermite-Hadamard’s inequality for functions convex on the coordinates, Applied Mathematics E-Notes, 18 (2018) 275-283.
  • [5] Hanson M.A., On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80 (1981) 545-550.
  • [6] Ben-Isreal A., Mond B., What is invexity? Journal of Australian Mathematical Society, Series B., 28(1) (1986) 1-9.
  • [7] Noor M.A., Hermite-Hadamard integral inequalities for log-preinvex functions, Journal of Mathematical Analysis and Approximation Theory, 2 (2007) 126-131.
  • [8] Mohan S.R., Neogy S.K., On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995) 901-908.
  • [9] Pini R., Invexity and generalized Convexity. Optimization, 22 (1991) 513-525.
  • [10] Weir T., Mond B., Preinvex functions in multiple bijective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
  • [11] Yang X.M., Li D., On properties of preinvex functions, J. Math. Anal. Appl, 256 (2001) 229-241.
  • [12] Noor, M.A., Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005) 463-475.
  • [13] Mishra S.K., Giorgi G., Invexity and optimization, Nonconvex optimization and Its Applications, Vol.88, Berlin: Springer-Verlag, 2008.
  • [14] Kumar P., Inequalities involving moments of a continuous random variable defined over a finite interval, Computers and Math. with Appl., 48 (2004) 257-273.
  • [15] Gavrea B.A, Hermite–Hadamard type inequality with applications to the estimation of moments of
  • [16] Feller W., An introduction to Probability Theory and its Applications, Vol.2, New York: J John Wiley, 1971.
  • [17] Ross S.M., Stochastic Processes, 2rd ed.; J.Wiley&Sons, 1996.
  • [18] Nikodem K., On convex stochastic processes, Aequat. Math., 20 (1980) 184-197.
  • [19] Kotrys D., Hermite-Hadamard inequality for convex stochastic processes, Aequat. Math., 83 (2012) 143- 151.
  • [20] Okur N., Multidimensional general convexity for stochastic processes and associated witH HermiteHadamard type integral inequalities, Thermal Sci., Suppl. 6(23) (2019), 1971-1979.
  • [21] Okur N., Aliyev R., Some Hermite-Hadamard type integral inequalities for multidimensional general preinvex stochastic processes, Comm. Statist. Theory Methods, 49 (2020), in press.
  • [22] Set E., Sarıkaya M.Z., Tomar M., Hermite-Hadamard inequalities for coordinates convex stochastic processes, Mathematica Aeterna, 5 (2) (2015) 363-382.
  • [23] Akdemir G.H., Okur B. N., Iscan,I., On Preinvexity for Stochastic Processes, Statistics, Journal of the Turkish Statistical Association, 7(1) (2014) 15-22.
  • [24] Okur B. N., Gunay Akdemir H., Iscan I., Some extensions of preinvexity for stochastic processes, Comp. Analysis, Springer Proceedings in Mathematics & Statistics,, New York: Springer, 2016; 155, 259-270.
  • [25] Usta Y., Stokastik Süreçler için Koordinatlarda Bazı Konvekslik Çeşitleri ve Hermite-Hadamard Eşitsizliği, Yüksek Lisans Tezi, Giresun Üniversitesi, Fen Bilimleri Enstitüsü, 2018.
Cumhuriyet Science Journal-Cover
  • ISSN: 2587-2680
  • Yayın Aralığı: 4
  • Başlangıç: 2002
  • Yayıncı: SİVAS CUMHURİYET ÜNİVERSİTESİ > FEN FAKÜLTESİ
Sayıdaki Diğer Makaleler

A comparison of nutritional values and antioxidant levels of desi and Turkish kabuli chickpea (Cicer arietinum L.) seeds

Tuğçe KALEFETOĞLU MACAR, Oksal MACAR

Prediction of UEFA champions league elimination rounds winners using machine learning algorithms

Coşkun KUŞ, İsmail Hakkı KINALIOĞLU

Determination of the electrical and thermal properties of Al-Sn-Zn alloys

Canan ALPER BİLLUR, Canan ALPER BİLLUR

Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique

Hasan ESKALEN, Mustafa ÇEŞME

Characterization of gallium oxide/glass thin films grown by RF magnetron sputtering

Ali ÖZER, Soheil MOBTAKERİ, Ebru Şenadım TÜZEMEN, Emre GÜR

Different methods of estimation for the one-parameter Akash distribution

Kadir KARAKAYA, Caner TANIŞ

Gamma-rays shielding characteristics of borosilicate glass containing ZnO by using WinXCOM

Recep KURTULUŞ, Taner KAVAS

2-dimensional investigation of in-cylinder flow and turbulence at suction stroke in internal combustion 4-stroke engines

İbrahim CAN, İlyas GÜLDEŞ

Biological Activity of Some Pyrimidine Derivatives: Cytotoxicity and Oxidative Stress Potential in Human Lung Cancer Cell line (A549).

Seda FANDAKLI, Mahmoud ABUDAYYAK, Nurettin YAYLI, Fatma Betul SAMLIOGLU, Beyza SELEN

The utilisation of herbicides by indigenous microorganisms obtained from Ago-Iwoye, Nigeria, for enhanced growth rates and as carbon source in-vitro

Adewole SEBIOMO, Folake M. BANJO