Machine Learning Applications to the One-speed Neutron Transport Problems

Machine Learning Applications to the One-speed Neutron Transport Problems

Machine learning is a branch of artificial intelligence and computer science. The purpose of machine learning is to predict new data by using the existing data. In this study, two different machine learning methods which are Polynomial Regression (PR) and Artificial Neural Network (ANN) are applied to the neutron transport problems which are albedo problem, the Milne problem, and the criticality problem. ANN applications contain two different activation functions, Leaky Relu and Elu. The training data set is calculated by using the HN method. PR and ANN results are compared with the literature data. The study is only based on the existing data; therefore, the study could be thought only data mining on the one-speed neutron transport problems for isotropic scattering. 

___

  • [1] Carlson B.G., Solution of the Transport Equation by SN Approximations. Los Alamos Scientific Laboratory, LA-1599, United States, (1955) 1-29.
  • [2] Lewis E.E., Miller W.F., Computational Methods of Neutron Transport. United States, (1984).
  • [3] Case K.M., Zweifel P.F., Linear Transport Theory. Addition-Wesley: MA, (1967) 1-270.
  • [4] Case K.M., Elementary solutions of the transport equation and their applications, Annals of Phys., 9 (1) (1960) 1–23.
  • [5] Kavenoky A., The CN Method of Solving the Transport Equation: Application to Plane Geometry, Nuclear Science and Eng., 65 (2) (1978) 209-225.
  • [6] Grandjean P., Siewert C.E., The FN method in neutron-transport theory. Part II: applications and numerical results, Nucl. Sci. Eng., 69 (2) (1979) 161-168.
  • [7] Tezcan C., Kaşkaş A., Güleçyüz M.Ç., The HN method for solving linear transport equation: theory and applications, JQSRT., 78 (2) (2003) 243-254.
  • [8] Géron A., Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, 2nd ed. O'Reilly Media, (2019).
  • [9] Chen Z., Andrejevic N., Drucker N.C., Nguyen T., Xian R.P., Smidt T., Wang Y., Ernstorfer R., Tennant D.A., Chan M., Li M., Machine learning on neutron and x-ray scattering and spectroscopies, Chem. Phys. Rev., 2 (2021) 031301.
  • [10] Whewell B., McClarren R.G., Data reduction in deterministic neutron transport calculations using machine learning, Annals of Nuclear Energy., 176 (1) (2022) 109276.
  • [11] Xie Y., Wang Y., Ma Y., Wu Z., Neural Network Based Deep Learning Method for Multi-Dimensional Neutron Diffusion Problems with Novel Treatment to Boundary, J. Nucl. Eng., 2 (2021) 533-552.
  • [12] Zolfaghari M., Masoudi S.F., Rahmani F., Fathi A., Thermal neutron beam optimization for PGNAA applications using Q-learning algorithm and neural network, Sci. Rep., 12 (2022) 8635.
  • [13] Zheng C., Liub L., Muc L., Solving the linear transport equation by a deep neural network approach, Preprint submitted to Journal of Discrete and Continuous Dynamical System-S., 15 (4) (2021) 669-686.
  • [14] Numpy. Available at: https://numpy.org/doc/stable/user/index.html#user Retrieved August 2022.
  • [15] Scipy. Available at: https://scipy.org/ Retrieved August 2022.
  • [16] Sklearn. Available at: https://scikit-learn.org/stable/ Retrieved August 2022.
  • [17] Keras. Available at: https://keras.io/ Retrieved August 2022.
  • [18] Tensorflow. Available at: https://www.tensorflow.org/ Retrieved August 2022.
  • [19] Polyfit. Available at: https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html Retrieved August 2022.
  • [20]Sutskever, I., Vinyals O., Le Q.V., Sequence to Sequence Learning with Neural Networks, arXiv:1409.3215v3., (2014).
  • [21] Kingma D.P., Ba J.L., Adam: A Method for Stochastic Optimization, arXiv:1412.6980v9., (2017).
  • [22] Xu B., Wang N., Chen T., Li M., Empirical Evaluation of Rectified Activations in Convolution Network, arXiv:1505.00853v2., (2015).
  • [23]Clevert D., Unterthiner T., Hochreiter S., Fast and accurate deep network learning by exponential linear units (Elus), arXiv:1511.07289v5., (2016).
  • [24]Atalay M.A. The critical slab problem for reflecting boundary conditions in one-speed neutron transport theory, Annals of Nuclear Energy., 23 (3) (1996) 183-193.
Cumhuriyet Science Journal-Cover
  • ISSN: 2587-2680
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2002
  • Yayıncı: SİVAS CUMHURİYET ÜNİVERSİTESİ > FEN FAKÜLTESİ
Sayıdaki Diğer Makaleler

Green Synthesis of C-quantum Dots Modified ZnO Nanophotocatalyst: The Effect of Different Solvents Used in Production of C-quantum Dots Modified ZnO Nanophotocatalyst on Photocatalytic Performance

Merve VURUCUEL, Ali DURAN, Abdullah İNCİ, Erkan YILMAZ

Acetylcholinesterase Inhibitor Activity of Some 5-Nitrothiophene-Thiazole Derivatives

Demokrat NUHA, Asaf Evrim EVREN, Zennure Şevval ÇİYANCI, Halide Edip TEMEL, Gülşen AKALIN ÇİFTÇİ, Leyla YURTTAŞ

Analysis of Exact Solutions of a Mathematical Model by New Function Method

Yusuf GÜREFE, Yusuf PANDIR, Tolga AKTÜRK

Dual-Gaussian Pell and Pell-Lucas numbers

Hasan GÖKBAŞ

The Effects of Lapatinib and Trastuzumab in a Rat Model of Endometriosis

Çağlar YILDIZ, Zeki ÖZSOY, Turgut KACAN, Hatice ÖZER

The Complete Mitogenome of Redheaded Pine Sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae): Duplication of trnR Gene and Rearrangement in the ARNS1EF Gene Cluster

Ertan Mahir KORKMAZ

Synthesis, Structural Characterization and Investigation of DNA/BSA Binding Properties of a Homo-disulphide Schiff Base Compound Carrying Oxo Propargyl Group

Ayşegül KÖSE

Molecular Docking and ADME Analysis of L-Phe -L-Tyr Dipeptide

Bilge BIÇAK, Serda Kecel GUNDUZ

Sensitive Determination of Venlafaxine in Urine Samples by Using HPLC-DAD System After Fabric Phase Sorptive Extraction

Beyzanur ÖZDEMİR, Halil İbrahim ULUSOY, Ümmügülsüm MORGÜL, Marcello LOCATELLİ, Abuzar KABİR

Evaluation of Thalamus Volumes in Patients with Diabetic Polyneuropathy Using Magnetic Resonance Imaging Method

Ayşegül ÖZTÜRK, Vedat SABANCIOĞULLARI, Yaşar TAŞTEMUR, İbrahim ÖZTOPRAK