Kinematic Analysis in 3-Dimensional Generalized Space
Kinematic Analysis in 3-Dimensional Generalized Space
In this paper, we have first obtained the derivatives of spherical and spatial motions by using the special matrix group in generalized space E3(α,β). The rotation matrices and tangent operators were found by using derivatives of one- and multi-parameters motions in E3(α,β). Also, we obtained the angular velocity matrix of the moving body and its linear velocity vector. Finally, we gave some examples including applications of tangent operators and rotation matrices in support of our results.
___
- [1] Awrejcewicz J., Classical Mechanics; Kinematics and Statics, New York: Springer, (2012).
- [2] Agrawal O.P., Hamilton Operators and Dual-numberquaternions in Spatial Kinematics, Mech Mach Theory, 22 (1987) 569-575.
- [3] Beggs J.S., Advanced Mechanisms, New York: The Macmillan Company Collier-Macmillan, London (1965).
- [4] Herve J.M., The mathematical group structure of the set of displacements, Mech. Mach. Theory, 29 (1994) 73-81.
- [5] Hiller M., Woernle C., A Unified Representation of Spatial Displacements, Mech. Mach. Theory, 19(1984) 477-486.
- [6] Spong M.W., Hutchison S., Vidyasagar M., Robot Modeling and Control. Hoboken: NJ John Wiley & Sons, (2006).
- [7] Altmann S.L., Rotations, Quaternions and Double Groups. Oxford: Oxford University Press, (1986).
- [8] Aragon G., Aragon J.L., Rodriguez M.A., Clifford Algebras and Geometric Algebra, Adv Appl Clifford Al., 7(2) (1997) 91-102.
- [9] Rosenfeld B., Geometry of Lie Groups. Dordrecht: Kluwer Academic Publishers, (1997).
- [10] Uicker J.J., Pennock G.R., Shigley J., Theory of Machines and Mechanisms. New York: Oxford University Press, (2011).
- [11] Bottema O., Roth, B., Theoretical Kinematics. New York: North-Holland Press, (1979).
- [12] McCarthy J.M., An Introduction to Theoretical Kinematics. Cambridge: MIT Press, (1990).
- [13] O’Neill B., Semi-Riemannian Geometry With Applications to Relativity. New York: Academic Press Inc., (1983).
- [14] Ryan P.J., Euclidean and non-Euclidean geometry; an analytic approach. Cambridge, New York: Cambridge Univ. Press, (1986).
- [15] Ata E., Yıldırım Y.A., Different Polar Representation for Generalized and Generalized Dual Quaternions, Adv Appl Clifford Al., 28 (2010) 193-202.
- [16] Ata E., Savcı Ü.Z., Spherical Kinematics in 3-Dimensional Generalized Space Int J Geom Meth Mod Phys., 18(3) (2020) 2150033.
- [17] Erdmann K., Skowronski A., Algebras of generalized quaternion type, Advances in Mathematics, 349 (2019) 1036-1116.
- [18] Jafari M., Yaylı Y., Generalized Quaternions and Rotation in 3-Space E3αβ, TWMS J. Pure Appl. Math., 6(2) (2015) 224- 232.
- [19] Lam T.Y., Introduction to Quadratic Forms Over Fields, American Mathematical Society, USA (2005).
- [20] Pottman H., Wallner J., Computational line geometry. Berlin Heidelberg, New York: Springer-Verlag, (2000).
- [21] Savcı Ü.Z., Generalized Dual Quaternions and Screw Motion in Generalized Space, Konuralp Journal of Mathematics, 10 (1) (2022) 197-202.
- [22] Parkin I.A., A third conformation witht the screw systems: finite twist displacements of a directed line and point, Mech. Mach. Theory, 27(2) (1992) 177- 188.
- [23] Huang C., Roth B., Analytic expressions for the finite screw systems, Mech. Mach. Theory, 29(2) (1994) 207-222.
- [24] Knossow D., Ronfard R., Horaud R., Human motion tracking with a kinematic parameterization of extremal contours, International Journal of Computer Vision, 79 (2008) 247- 269.
- [25] Durmaz O., Aktaş B., Gündogan H., The derivative and tangent operators of a motion in Lorentzian space, Int. J. Geom. Meth. Mod. Phys., 14(4) (2017) 1750058.
- [26] Ward J.P., Quaternions and Cayley numbers algebra and applications. London: Kluwer Academic Publishers, (1997).