α-Integral Representation of The Solution for A Conformable Fractional Diffusion Operator and Basic Properties of The Operator

α-Integral Representation of The Solution for A Conformable Fractional Diffusion Operator and Basic Properties of The Operator

In this paper, we consider a diffusion operator which includes conformable fractional derivatives of order α (0<α≤1) instead of the ordinary derivatives in a traditional diffusion operator. We give an α-integral representation for the solution of this operator and obtain the conditions provided by the kernel functions in this representation. Also, by investigating the basic properties of this operator, we obtain the asymptotics of the data {λ_n,α_n }, which are called the spectral data of the operator.

___

  • [1] Khalil R., Al Horania M., Yousefa A., et al., A New Definition of Fractional Derivative, J. Comput. Appl. Math., 264 (2014) 65-70.
  • [2] Abdeljawad T., On Conformable Fractional Calculus, J. Comput. Appl. Math., 279 (2015) 57-66.
  • [3] Atangana A., Baleanu D., Alsaedi A., New Properties of Conformable Derivative, Open Math., 13 (2015) 889-898.
  • [4] Abu Hammad M., Khalil R., Abel’s Formula and Wronskian for Conformable Fractional Differential Equations, Int. J. Differ. Equ. Appl., 13 (3) (2014) 177-183.
  • [5] Birgani O.T., Chandok S., Dedovic N., Radenoviç S., A Note on Some Recent Results of the Conformable Derivative, Adv. Theory Nonlinear Anal. Appl., 3 (1) (2019) 11-17.
  • [6] Zhao D., Luo M., General Conformable Fractional Derivative and its Physical Interpretation, Calcolo, 54 (2017) 903–917
  • [7] Zhou H.W., Yang S., Zhang S.Q., Conformable Derivative Approach to Anomalous Diffusion, Physica A, 491 (2018) 1001-1013.
  • [8] Chung W.S., Fractional Newton Mechanics with Conformable Fractional Derivative, J. Comput. Appl. Math., 290 (2015) 150-158.
  • [9] Benkhettou N., Hassani S., Torres D.F.M., A Conformable Fractional Calculus on Arbitrary Time Scales, J. King Saud Univ. Sci., 28 (2016) 93–98.
  • [10] Jarad F., Uğurlu E., Abdeljawad T., Baleanu D., On a New Class of Fractional Operators, Adv. in Differ. Equ., 2017 (2017) Article ID 247 .
  • [11] Mortazaasl H., Jodayree Akbarfam A,. Trace Formula and Inverse Nodal Problem for a Conformable Fractional Sturm-Liouville Problem, Inverse Problems in Science and Engineering, 28 (4) (2020) 524-555.
  • [12] Keskin B., Inverse Problems for one Dimentional Conformable Fractional Dirac Type Integro Differential System, Inverse Problems, 36 (6) (2020) 065001.
  • [13] Adalar I., Ozkan A.S., Inverse Problems for a Conformable Fractional Sturm-Liouville Operators, Journal of Inverse and Ill-posed Problems, 28 (6) (2020).
  • [14] Çakmak Y., Inverse Nodal Problem for a Conformable Fractional Diffusion Operator, Inverse Problems in Science and Engineering, 29 (9) (2021) 1308-1322.
  • [15] Allahverdiev B.P., Tuna H., Yalçinkaya Y., Conformable Fractional Sturm-Liouville Equation, Mathematical Methods in the Applied Sciences, 42 (10) (2019) 3508-3526.
  • [16] Gasymov M.G., Gusejnov G.S., Determination of a Diffusion Operator from Spectral Data, Akad. Nauk Azerb. SSR. Dokl., 37 (2) (1981) 19-23.
  • [17] Koyunbakan H., Panakhov E.S., Half-Inverse Problem for Diffusion Operators on the Finite Interval, J. Math. Anal. Appl., 326 (2) (2007) 1024-1030.
  • [18] Yang C.F., New Trace Formulae for a Quadratic Pencil of the Schrodinger Operator, Journal of Mathematical Physics, 51 (3) (2010) 33506-33506-10.
  • [19] Wang Y., Zhou J., Li Y., Fractional Sobolev’s Spaces on Time Scales via Conformable Fractional Calculus and Their Application to a Fractional Differential Equation on Time Scales, Adv. Math. Phys., 2016 (2016) 21.
  • [20]Guseinov G.Sh., Inverse Spectral Problems for a Quadratic Pencil of Sturm-Liouville Operators on a Finite Interval, Spectral Theory of Operators and Its Applications, Elm, Baku, Azerbaijan, 7, (1986) 51–101. (In Russian)
  • [21] Freiling G., Yurko V.A., Inverse Sturm–Liouville Problems and Their Applications, New York: Nova Science Publishers, (2001).
Cumhuriyet Science Journal-Cover
  • ISSN: 2587-2680
  • Yayın Aralığı: 4
  • Başlangıç: 2002
  • Yayıncı: SİVAS CUMHURİYET ÜNİVERSİTESİ > FEN FAKÜLTESİ
Sayıdaki Diğer Makaleler

Contribution of Neutralino and Chargino to Diagonal Form Factor of Majorana Neutrino in the Minimal Supersymmetric Standard Model

Coşkun AYDIN

DNA Barcoding of Commercial Cockroaches in Turkey

Şeyda BERK, Ayşe Nur PEKTAŞ

Investıgatıon of the Effects of Favipiravir and Oseltamivir Active Substances Used in the Treatment of Covid-19 on Carbonic Anhydrase I-II Isoenzymes and Acetylcholine Enzyme Activities in Vitro

Sueda ARIK, Ümit Muhammet KOÇYİĞİT

Parameters Estimation for the Unit log-log Distribution

Mustafa Ç. KORKMAZ, Kadir KARAKAYA, Yunus AKDOĞAN, Yener ÜNAL

Silver Nanoparticles Capped with Poly[(maleic anhydride)-co-(vinyl acetate)]

Gamze AYAS, Gülderen KARAKUŞ

The Effect of Two Different Botulinum Neurotoxin A On The Cortical Neuron Cells In Terms of Apoptosis and MMP 2, MMP 7, and MMP9 Localizations

Deniz ŞAHİN İNAN, Zübeyde AKIN POLAT, Rasim HAMUTOĞLU

Common Fixed Point Results for Suzuki Type Contractions on Partial Metric Spaces with an Application

Kübra ÖZKAN

Ibuprofen and Paracetamol when They Meet: Quantum Theory of Atoms in Molecules Perspective

Cemal PARLAK, Özgür ALVER, Özge BAĞLAYAN, Onur DEMİREL

Investigation of the Analgesic Properties L-759,633 and SER 601 in Experimental Neuropathic Pain Model in Rats and their Comparison with Pregabalin

Zıad JOHA, Şahin YILDIRIM, Levent HACISÜLEYMAN, Ahmet Şevki TAŞKIRAN

Structural, Electronic, ADME and p450 Analyses of Boron Containing Compounds against Omicron Variant (B.1.1.529) in SARS-CoV-2

Koray SAYIN, Hilmi ATASEVEN