Düzleştirici Filtresiz Foton Kirişlerin (FFF) 3D Konformal Radyoterapide Dozimetrik Etkilerinin Değerlendirilmesi

Düzleştirici Filtre Serbest (FFF) foton ışınları, radyoterapi klinik pratiğinde sıklıkla kullanılmaktadır. Bu çalışmada, 6 ve 10 MV foton enerjileri ve 3D konformal radyoterapi tekniği (3D-CRT) kullanılarak üç kanser bölgesi içeren üç hastanın tedavi planları için standart düzleştirilmiş kirişlere (FB) kıyasla FFF ışınlarının dozimetrik kalitesini analiz etmeyi amaçladık. Planlanan hedef hacim dozları (PTV'ler) ve risk altındaki organlar (OAR'ler) karşılaştırıldı. Doz-hacim histogram eğrileri analizi, FFF ve FB planları arasında PTV için ortalama doz ve ortalama doz arasında anlamlı bir fark bulunmadığını, OAR'ın hafif farklılıklar olduğunu göstermektedir. Böylece FFF foton ışını, standart düz kiriş olarak karşılaştırılabilir dozimetrik kaliteye ulaşmıştır

Evaluation of dosimetric impact of Flattening Filter-Free(FFF) Photon Beams in 3D conformal radiotherapy

Flattening Filter Free (FFF) photon beams have been frequently used in radiotherapy clinical practice. This study aimed to analyze the dosimetric quality of the FFF beams, as compared to the standard flattened beams (FB) for plans of treatment of three patients involving three cancer sites using the 6 and 10 MV photon energies and the 3D conformal radiotherapy technique (3D-CRT). The doses to the planning target volumes (PTVs) and organs at risk (OARs) were compared. The dose-volume histogram curves analysis show that no significant differences between FFF and FB plans were found in the coverage and mean dose for the PTV, the OAR revealed slight differences. So the FFF photon beam achieved comparable dosimetric quality as the standard flat beam

___

  • 1.Podgorsak E.B, Radiation Oncology Physics: A Handbook for Teachers and Students. International Atomic Energy Agency, 2005.
  • 2.Fogliata A & al, Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy, J. Med. Phys, 39 (2012) 6455- 64.
  • 3. Rout BK, Muralidhar KR, Ali M, Shekar MC and Kumar A, Dosimetric study of RapidArc plans with flattened beam (FB) and flattening filter-free (FFF) beam for localized prostate cancer based on physical indices. Int. J. Cancer Ther. Oncol., 2 (2014) 2046.
  • 4.M. Kretschmer & al, The impact of flattening-filter-free beam technology on 3D conformal RT, J. Radiat Oncol., 8 (2013) 133.
  • 5.Stathakis S and al, Treatment planning and delivery of IMRT using 6 and 18 MV photon beams without flattening filter. Applied Radiation and Isotopes, 67 (2009) 1629-37
  • 6.Mingzan Z and al, Volumetric modulation arc radiotherapy with flattening filter-free beams compared with conventional beams for feasibility study, Chin. J. Cancer, 32 (2013) 397-402.
  • 7. Stevens S.W, Rosser K.E, and Bedford J.L, A 4 MV flattening filter free beam: Commissioning conformal application to therapy and volumetric modulated arc therapy, J. Phys Med Biol., 56 (2011) 3809-24.
  • 8.Scorsetti M and al, Feasibility and early clinical assessment of flattening filter free (FFF)
  • radiotherapy (SBRT) treatments, J. Radiat Oncol., 6 (2011) 113.
  • 9. Vassiliev O.N and radiotherapy for lung cancer using a flattening filter free Clinac, J. Appl Clin Med Phys., 10 ( 2009) 14–21.
  • 10. Georg D, Knöös T, McClean B, Current status and future perspective of flattening filter free photon beams, J. Med Phys., 38 (2011) 1280-93.
  • 11.Wang Y, Khan M.K, Ting J.Y, Easterling S.B, Surface dose investigation of the flattening filter-free photon beams, J. Radiat Oncol Biol Phys., 83 (2011) 281- 285.