G- Brownian motion and Its Applications

Abstract. The concept of G-Brownian motion and G-Ito integral has been introduced by Peng. Also Ito isometry lemma is proved for Ito integral and Brownian motion. In this paper we first investigate the Ito isometry lemma for G-Brownian motion and G-Ito Integral. Then after studying of MG2,0-class functions [4], we introduce Stratonovich integral for G-Brownian motion,say G- Stratonovich integral. Then we present a special construction for G- Stratonovich integral. 

___

  • Oksendal,B.(2003). Stochastic differential equations (pp20-26). Springer Berlin Heidelberg.
  • Peng, S. (2006) G–Expectation, G–Brownian Motion and Related Stochastic Calculus of Itˆo’s type, preprint (pdf-file available in arXiv:math.PR/0601035v1 3Jan 2006), to appear in Proceedings of the 2005, Abel Symposium.
  • Peng, S. (2005), Dynamically consistent nonlinear evaluations and expectations, preprint (pdf-file available in arXiv:math. PR/0501415 v1 24 Jan2005).
  • Peng, S. (2004) Nonlinear expectation, nonlinear evaluations and risk measurs,in K. Back T. R. Bielecki, C. Hipp, S. Peng, W. Schachermayer, Stochastic Methods in Finance Lectures, 143–217, LNM 1856, Springer-Verlag.
  • Peng, S. (2004) Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims, Acta Mathematicae Applicatae Sinica, English Series 20(2), 1–24.