UtilizationofChromite Waste as Colorant in Single Fired Wall Tile Glaze Compositions

Bu çalışmada nötralizasyon işlemi sonrası elde edilen kromit atığının şeffaf ve opak duvar karosu sır kompozisyonlarında renklendirici olarak kullanılabilirliğine dikkat çekilmiştir. Nötralize edilmiş kromit cevheri atığı Kazanlı (Mersin)'da bulunan ve Şişecam Kimyasalları Grubuna bağlı Soda-Krom Fabrikaları'ndan elde edilmiş ve artan oranlarda şeffaf ve opak duvar karosu sır reçetelerinde %3-6 oranında kullanılmıştır. Sır kompozisyonları astarlı duvar karoları üzerine 0,5 mm kalınlığında uygulanmış ve 1200°C'de fırınlanmıştır. Pişirim sonrasında sırlı yüzeylerde herhangi bir hataya rastlanmamıştır. Sırların karakterizasyonu, Taramalı Elektron Mikroskobu (SEM-EDX) ile yapılmıştır. Sırlama ve pişirme işlemlerinden sonra sırlı yüzeylerde UV-Visible Spectrophotometer ile CIE-L*a*b* parametreleriyle ifade edilen renk değerleri elde edilmiştir. Sırlı örnekler 200°C'de ısıl şok testine tabi tutulmuş bünye-sır arasında, herhangi bir çatlama veya kavlama görülmemiştir. 1200°C'de atık malzemenin seramik sırlarını renklendirmede olumlu etkilere sahip olduğu gözlenmiştir

Kromit Atığının Tek Pişirim Duvar Karosu SırlarındaRenklendirici Olarak Kullanılması

The present study focuses on the utilization of chromite waste after neutralization process as coloring agent for transparent and opaque wall tile glaze compositions. The neutralized processed chromite ore waste obtained from the Soda-Chrome Industries Inc. in Kazanlı (Mersin), a branch of Şişe-Cam Chemicals Group, was used in increasing amounts in ceramic wall tile glazes. 3-6% of chromite waste was used in opaque and transparent wall tile glaze recipes. The glaze compositions were applied as thin layers (0.5 mm) on engobed wall tile bodies and fired at 1200°C. After firing, no surface defects were observed on glazed surface. Glazes were charaterized by electron microscopy (SEM-EDX). The color obtained after glazing and firing was defined as CIE-L*a*b* parameters by using UV-Visible Spectrophotometer. Glazed samples were subjected to thermal shock test at 200°C and no evidence of crack and peeling were found between body and glaze coating. It has been observed that waste material has positive effects as a colorant in ceramic glazes at 1200°C

___

Eliche Quesada, D., Corpas-Iglesias, F.A., Pérez-Villarejo, L., Iglesias-Godino, F.J., 2012. Recycling of Sawdust, Spent Earth from Oil Filtration, Compost and Marble Residues for Brick Manufacturing, Const. and Build. Mat.34, 275-284.

Dal Bó, M., Adriano, Bernardin, M., Hotza, D., 2014. Formulation of Ceramic Engobes with Recycled Glass Using Mixture Design, J. Clean. Prod., Vol. 69, 243-249.

Nandi, V.S., Raupp-Pereira, F., Montedo, O.R.K., Oliveira, A.P.N., 2015. The Use of Ceramic Sludge and Recycled Glass to Obtain Engobes for Manufacturing Ceramic Tiles. J. Clean. Prod., Vol. 86, 461-470.

Da Silva, R.C., Pianaro, S.A., Tebcherani, S.M., 2012. Preparation and Characterization of Glazes from Combinations of Different Industrial Wastes, Ceram. Int. Vol.38-4, 2725-2731.

Schabbach, L.M., Bolelli, G., Andreola, F., Lancellotti, I., Barbieri, L. 2012. Valorization of MSWI Bottom Ash Through Ceramic Glazing Process: A New Technology. J. Clean. Prod. Vol. 23(1) 147-157.

Karasu, B., Çakı, M., Yeşilbaş, Y.G., 2001. The Effect of Albite Wastes on Glaze Properties and Microstructure of Soft Porcelain Zinc Crystal Glazes, J. Eur. Ceram. Soc., Vol., 21, 8, 1131-1138.

Pekkan, K., Karasu, B., 2012. Evaluation of Borax Solid Wastes in Production of Frits Suitable for Fast Single-Fired Wall Tile Opaque Glass-Ceramic Glazes, Bull. Mater. Sci., 33, 2, 135-144.

Yalçın, N., Sevinç, V., 2000. Utilization of Bauxite Waste in Ceramic Glazes, Ceramics International, Vol. 26, I5, 485-493.

Costa Pereira, O.A., Bernardin, M., 2012. Ceramic Colorant from Untreated Iron Ore Residue, J. Hazard. Mater., 233-234, 103-111.

Hajjaji, W., Costa, G., Zanelli, C., Ribeiro, M.J., Seabra, M.P., Dondi, M., Labrincha, J.A., 2012. An Overview of Using Solid Wastes for Pigment Industry, J. Eur. Ceram. Soc. Vol. 32- 4 753-764.

Riella, G., Bernardin, A.M., 2008. Inorganic Pigment Made from the Recycling of Coal Mine Drainage Treatment Sludge, J. Environ. Manage. Vol. 88-4, 1280-1284.

Costa, G., Ribeiro, M.J., Labrincha, J.A., Dondi, M., Matteucci, F., Cruciani, G., 2008. (a) Malayaite Ceramic Pigments Prepared With Galvanic Sludge as Coloring Agent, Dyes and Pigments, Vol. 78 157-164.

Costa, G., Della, V.P., Ribeiro, M.J., Oliveira, A.P.N., Monro?ıs, G., Labrincha, J.A., 2008. (b) Synthesis of Black Ceramic Pigments from Secondary Raw Materials, Dyes Pigments, Vol. 77 137-144.

Legodi, M.A., de Waal, D., 2006. The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste, Dyes Pigments, Vol., 74.

Prim, S.R., Folgueras, M.V., de Lima, M.A., Hotza, Characterization of Hematite Pigment Obtained from a Steel Waste Industry, J. Hazard. Mater., Vol. 192 1307-1313. Synthesis and

Erol, M., Genç, A., Öveçoğlu, M.L., Yücelen, E., Küçükbayrak, S., Taptık, Y., 2000. Characterization of a Glass-Ceramic Produced from Thermal Power Plant Fly Ashes, J. Eur. Ceram. Soc., Vol. 20 2209-2214.

Appendino, P., Ferraris, M., Matekovits, I., Salvo, M., 2004. Production of Glass-Ceramic Bodies from the Bottom Ashes of Municipal Solid Waste Incinerators, J Eur. Ceram. Soc., Vol. 24 803-810.

Boccaccini, A.R., Bucker, M., Bossert, J., 1996. Glass and Glass-Ceramics from Coal Fly-Ash and Waste Glass, Tile & Brick Int., Vol. 12 515-518.

Raut, S.P., Ralegaonkar, R.V., Mandavgane, S.A., 2011. Development of Sustainable Construction Material Using Industrial and Agricultural Solid Waste: A Review of Waste- Create Bricks, Const. and Build. Mat. 25 4037-4042.

Pérez-Villarejo, L., Martínez-Martínez, S., Carrasco-Hurtado, B., Eliche-Quesada, D., Ureña-Nieto, C., Sánchez-Soto, P.J., 2015. Valorization and Inertization of Galvanic Sludge Waste in Clay Bricks, Appl. Clay Sci., 105-106, 89-99.

Neves Monteiro, S., Maurício Fontes Vieira, C., 2014. On the Production of Fired Clay Bricks from Waste Materials: A Critical Update, Const. and Build. Mat., Vol. 68, 599-610.

Muñoz Velasco, P., 2014. Fired Clay Bricks Manufactured Sustainable Construction Material-A Review. Const. Build. Mat.Vol. 63, 97-107. as

Hu, H., Deng, Q., Li, C., Xie, y., Dong, Z., Zhang, W., 2014. The Recovery of Zn and Pb and the Manufacture of Lightweight Bricks from Zinc Smelting Slag and Clay, J. Hazard. Mater., Vol. 271, 220-227.

Dondi, M., Guarini, G., Raimondo, M., Zanelli, C., 2009. Recycling PC and TV Waste Glass in Clay Management 29, 1945-1951. Tiles, Waste

Torres, P., Fernandes, H.R., Olhero, S., Ferreira, J.M.F., 2009. Incorporation of Wastes from Granite Rock Cutting and Polishing Industries to Produce Roof Tile, J. Eur. Ceram. Soc., Vol. 29, 23-30.

Monteiro, S.N., Peçanha, L.A., Vieira, C.M.F., 2004. Reformulation of Roofing Tiles Body with Addition of Granite Waste from Sawing Operations, J, Eur. Ceram. Soc. Vol. 24, 2349-2356.

Kute, S.E., Deodhar, S.V., 2003. Effect of Fly Ash and Temperature on Properties of Burnt Clay Bricks, J. Civil Eng. Vol. 84, 82-85.

Olgun, A., Erdoğan, Y., Ayhan, Y., Zeybek, B., 2005. Development of Ceramic Tiles from Coal Fly Ash and Tincal Ore Waste, Ceramics International Vol. 31, 153-158.

Souza, A.J., Pinheiro, B.C.A., Holanda, J.N.F., 2010. Recycling of Gneiss Rock Waste in the Manufacture of Vitrified Floor Tiles, J Environ. Manage.,Vol. 91, I3685-689.

Baruzzo, D., Minichelli, D., Bruckner, S., Fedrizzi, L., Bachiorrini, A., Maschio, S., 2006. Possible Production of Ceramic Tiles from Marine Dredging Spoils Alone and Mixed with Other Waste Materials, J. Hazard. Mat., Vol. 134, 1-3, 202-210.

Eppler, R.A., Eppler, D.R., 2000. Glaze and Glass Coatings, Am. Ceram. Soc., Hong Kong, p.130.

Bonolini, F., Ferrari, A.M., Leonelli, C., Manfredini, T., 1997. Chromite as a Pigment for Fast-Fired Porcelain Tiles, Ceram. Eng. Sci. Proch., Vol. 18, 45-59.