Simulation of Urban Electric Vehicle Transport and Charging Station Implementation at Çukurova University

Dünya çapındaki endüstriyelleşme enerji tüketiminin giderek artmasına sebep olmuştur. Artan bu tüketim fosil yakıtlar tarafından karşılanmaktadır. Fosil yakıt tüketimi ise çevre kirliliğine sebep olmaktadır. Buna ek olarak dünya fosil yakıt rezervleri ise giderek azalmaktadır. İçten yanmalı motorlu taşıtlar dünya genelinde en yaygın olarak kullanılan taşıtlardır ve büyük miktarlarda fosil yakıt tüketmektedirler. Dahası bu araçlardan çevreye yayılan emisyonlar doğaya büyük oranda zarar vermektedirler. Bu sebeplerden ötürü, günümüzde elektrikli araçlara olan ilgi artmış ve taşımacılık sektöründe alternatif bir çözüm olarak elektrikli araçlar öne çıkmışlardır. Bu makalede, yakın gelecekte üniversitede kullanılması öngörülen elektrikli araçlar için şarj istasyonu altyapısı ve bu altyapının var olan sisteme entegrasyonu çalışılmıştır.

Çukurova Üniversitesinde Kentsel Elektrikli Araç Ulaşımı ve Şarj İstasyonu Uygulama Simülasyonu

Energy consumption is increasing gradually with worldwide industrialization. This increase creates a high demand for production which depends on mostly fossil fuels. The use of fossil fuels leads to environmental pollution. Additionally, remaining reserves are limited. Internal combustion engine (ICE) vehicles are the most widely used vehicles worldwide and there is an enormous amount of fossil fuel consumption by them. Furthermore emissions released to nature by these vehicles are pollutants and they are big chink in our nature's armor. Because of these reasons, nowadays the demand for electric vehicles (EV) is increasing as an alternative form of transportation. Thus, EVs put themselves forward. In this paper, a charging station infrastructure for commercial electric vehicles used in public and their integration to an existing system is studied that intended to be used in university in near future. Case studies are examined and their results are compared.

___

  • ANONYM, 2014. BP Statistical Review of World Energy 2014, http://www.bp.com/en/ global/corporate/about-bp/energy- economics/statistical-review-of-world- energy.html
  • Liu, Q., Chen, W., 2011. Research on Construction of Urban Low Carbon Transport System, Materials for Renewable Energy & Environment (ICMREE), 2011 International Conference on (Volume: 2), 1263-1266.
  • ANONYM, 2014. Report of the European Expert Group on Future Transport Fuels, January 2011. http://ec.europa.eu/transport/ themes/urban/cts/doc/2011-01-25-future- transport-fuels-report.pdf.
  • Jacobson, M.Z., Colella, W.G., Golden, D.M., 2005. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles, Science 24 June 2005: Vol. 308 no. 5730 pp. 1901- 1905 doi: 10.1126/science.1109157.
  • Galus, M.D., Waraich, R.A., Noembrini, F., Steurs, K., Georges, G., Boulouchos, K., Axhausen, K.W., Andersson, G., 2012. Integrating Power Systems, Transport Systems and Vehicle Technology for Electric Mobility Impact Assessment and Efficient Control, IEEE Transactions on Smart Grid, Volume: 3, Issue: 2, doi: 10.1109/TSG.2012.2190628 Page(s): 934 - 949.
  • Lund, H., 2006. Renewable Energy Strategies For Sustainable Development, Third Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems, doi:10.1016/j.energy. 2006.10.017.
  • Dresselhaus, M.S., Thomas, I.L., 2001. Alternative Energy Technologies, Nature 414, 332-337 (15 November 2001), doi: 10.1038/ 35104599.
  • Lam, A.Y.S., Leung, Y., Chu, X., 2014. Electric Vehicle Charging Station Placement: Formulation, Complexity and Solutions, IEEE Transactions on Smart Grid, Volume: 5, Issue: 6, Page(s): 2846-2856, doi: 10.1109/TSG. 2014.2344684.