New Regression Models for Predicting the Hamstring Muscle Strength using Support Vector Machines

Bu çalışmanın amacı, Destek Vektör Makinesi (DVM) kullanarak üniversite çağındaki sporcuların hamstring kas kuvvetini tahmin etmek için yeni tahmin modelleri oluşturmaktır. Veri seti, yaşları 19 ve 38 arasında değişen, Gazi Üniversitesi Beden Eğitimi ve Spor Yüksekokulu'ndan seçilen 70 sporcudan oluşmaktadır. Elde edilen sonuçlara göre; cinsiyet, yaş, boy ve kilo değişkenlerini içeren tahmin modelinin, kabul edilebilir doğruluk ile hamstring kas kuvvetini tahmin etmek için geçerli ve kullanışlı bir yöntem sağladığını göstermektedir. Karşılaştırma amacıyla, Çok Katmanlı Algılayıcı (ÇKA) ve Tekli Karar Ağacı (TKA) yöntemlerine dayalı tahmin modelleri de oluşturulmuştur ve DVM tabanlı modellerin, hamstring kas gücünün tahmininde ÇKA ve TKA tabanlı modellerden daha iyi performans sergilediği görülmüştür

Destek Vektör Makinelerini Kullanarak Hamstring Kas Kuvveti Tahminiiçin Yeni Regresyon Modelleri

The purpose of this study is to build new prediction models for estimating the hamstring muscle strength of college-aged athletes using Support Vector Machine (SVM). The dataset is made up of 70 athletes ranging in age from 19 to 38 years who were selected from the College of Physical Education and Sport at Gazi University. The results show that the prediction model including the predictor variables gender, age, height and weight provides a valid and convenient method for estimating hamstring muscle strength within limits of acceptable accuracy. For comparison purposes, prediction models based on Multilayer Perceptron (MLP) and Single Decision Tree (SDT) have also been created, and it is seen that SVM-based models outperforms the MLP-based and SDT-based models for prediction of hamstring muscle strength

Kaynakça

Dervisevic, E., Hadzic, V., 2012. Quadriceps and Hamstrings Strength in Team Sports: Basketball, Football and Volleyball, Isokinetics and Exercise Science, vol. 20, no. 4, pp. 293-300.

Ford-Smith, C.D., Wyman, J.F., Elswick, R.K., Fernandez, T., 2001. Reliability of Stationary Dynamometer Muscle Strength Testing in Community-dwelling Older Adults, Archives of Physical Medicine and Rehabilitation, vol. 82, no. 8, pp. 1128-1132.

Clarke, H.H., 2013. Comparison of Instruments for Recording Muscle Strength, Research Quarterly, American Association for Health, Physical Education and Recreation, vol. 25, no. 4, pp. 398-411.

Montgomery, L.C., Douglass, L.W., Deuster, P.A., 1989. Reliability of an Isokinetic Test of Muscle Strength and Endurance, The Journal of Orthopaedic and Sports Physical Therapy, vol. 10, no. 8, pp. 315-322.

Kılınç, B.E., Kara, A., Camur, S., Oc, Y., Celik, H., 2015. Isokinetic Dynamometer Evaluation of the Effects of Early Thigh Diameter Difference on Thigh Muscle Strength in Patients Undergoing Anterior Cruciate Ligament Reconstruction with Hamstring Tendon Rehabilitation, vol. 11, no. 2, pp. 95-100.

Akay, M.F., Abut, F., Çetin, E., Yarım, İ., Sow, B., 2015. Data-Driven Modeling of Quadriceps and Hamstring Muscle Strength Using Support Vector Machines, in Third International Symposium Intelligence & Applications, pp. 2-4. Artificial

Abut, F., Akay, M.F., 2015. Machine Learning and Statistical Methods for the Prediction of Maximal Oxygen Uptake: Recent Advances, Medical devices, vol. 8, pp. 369-379.

Akay, M.F., Abut, F., Özçiloğlu, M., Heil, D., 2016. Identifying the Discriminative Predictors of Upper Body Power of Cross-country Skiers using Support Vector Machines Combined with Feature Selection, Neural Computing and Applications, vol. 27, no. 6, pp. 1785-1796.

Acikkar, M., Akay, M.F., Ozgunen, K.T., Aydin, K., Kurdak, S.S., 2009. Support Vector Machines for Aerobic Fitness Prediction of Athletes, Expert Systems with Applications, vol. 36, no. 2, pp. 3596-3602.

Hsu, C.W., Chang, C.C., Lin, C.J., 2003. A Practical Classification, Dept. of Computer Science, National Taiwan University, Taipei, 2003.

Hiregoudar, S.B., Manjunath, K., Patil, K.S., 2014. A Survey: Research Summary on Neural Networks, International Journal of Research in Engineering and Technology, vol. 3, no. 15, pp. 385-389.

Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., 2007.A Comparison of Decision Tree Ensemble Creation Techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 173-180.

Kaynak Göster

  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986

3.6b 2.4b

Sayıdaki Diğer Makaleler

UtilizationofChromite Waste as Colorant in Single Fired Wall Tile Glaze Compositions

NERGİS KILINÇ MİRDALI

Environmental Risk Analysis of Turkey under Climate Change Scenarios using Spatial Modelling: Application of Net Primary Productivity

Süha BERBEROĞLU CENK DÖNMEZ, AHMET ÇİLEK

Casting the Swarms Problem in the Ensembles Context

Çağatay KOK, Seven Burçin ÇELLEK, Çağlar KOŞUN, Serhan ÖZDEMİR

Toz Metal Parçalar ile Çelik Parçaların İndüksiyon ile Sinterleme Yöntemiyle Birleştirilmesi

ENVER ATİK, CAN ÇİVİ, Cansu KÖKEY, Gökhan EYİCİ

A Novel Stacked Monopole Microstrip Antenna for Ultra-Wideband Applications

MUSTAFA BERKAN BİÇER, Ali AKDAĞLI

Pull out Performance of Medical Screws used in Orthopaedic Surgeries

Durmuş Ali BİRCAN, Ahmet ÇETİN

Saplama Kaynak Bağlantılarının Çekme Dayanımının ANFIS ile Modellenmesi

NECİP FAZIL YILMAZ, M Veysel ÇAKIR, MUSA YILMAZ

Characterization and Analysis of Welding Area Between Alloy Steel Main Part and Bended End Part

EMRE YALAMAÇ, Ufuk İNCELI, Mustafa KARAAGAC, Selçuk YILDIZ

Microstructure and Mechanical Properties of High Velocity Oxygen Fuel (HVOF) Sprayed Nickel Powder Coating on Welding Regions of Aluminum Alloy AA5754 and DP600 Welded Steel Plates with the Friction Stir Spot Welding Process

Mesut ÖZER, Hasan KAYA, Egemen AVCU, ABDULLAH DEMİR, Mehmet UÇAR, Ramazan SAMUR

A Novel Application of Chitosan Hydrogel for Eliminate Biofilm Formation on Urethral Catheters

Deniz ISMIK, SEVİL YÜCEL, Melis ÖZGEN, Ceren GENÇ