Yüksek Gerilim Kabloları için Güvenilir Mekanik Konektör Tasarımı ve Direnç Kontrol Analizi

Yüksek gerilim kabloları, elektrik iletim şebekelerinin ve özellikle de elektrik dağıtım şebekelerinin değişmez ve en önemli parçalarıdır. Bu kabloların uzunluğu sınırlı olduğundan enerji hatlarının devamlılığını sağlayacak kablo bağlantı mekanizmaları kullanılması gerekmektedir. Bu çalışmada, elektrik iletiminde yüksek gerilim kablo sistemleri için bağlantı elemanı olarak kullanılan mekanik konektörlerin optimum özelliklere sahip tasarımının geliştirilmesi ve prototip üretimi amaçlanmıştır. Bu amaç doğrultusunda konektörün bozunma mekanizmaları ve konektör tasarım gereksinimleri araştırılarak 4 farklı tasarım geliştirilmiştir. Bu mekanik konektörler, 154 kV’lık taşıma kapasitesi ve 700 ±100 mm2 kesit alanı özelliklere sahip bakır kablolar için geliştirilmiş olup tel kesitine göre yapılandırılabilir niteliktedir. Geliştirilen tasarımlar matematiksel modelleme ortamına aktarılarak mukavemet analizleri yapılmış yer değiştirme (m) ve güvenlik katsayıları incelenmiştir. Mukavemet sonuçlarının uygunluğunun incelenmesi takiben tasarımların kanıtlaması için üretimi yapılmıştır. Güç sistemi ve konektörlerin bulunduğu yüksek gerilim hattından oluşan test düzeneği üzerinde 70’şer dakikalık 50’şer yük çevrim testi yapılarak direnç, akım ve gerilim değerleri gözlemlenmiştir ve uygunluğu (VDE 0220 ve CENELEC standartlarına uygun) incelenmiştir.

Reliable Mechanical Connector Design and Resistance Control Analysis for High Voltage Cables

High voltage cables are the most important and unchangeable parts of electricity transmission networks and especially electricity distribution networks. Since the length of these cables is limited, it is necessary to use cable connection mechanisms to ensure the continuity of power lines. In this study, it is aimed to develop the optimum design and prototype production of mechanical connectors used as connecting elements for high voltage cable systems in electrical transmission. For this purpose, 4 different designs have been developed by investigating the degradation mechanisms of the connector and the connector design requirements. These mechanical connectors have been developed for copper cables with a carrying capacity of 154 kV and a cross section of 700 +-100 mm2 and are configurable according to the wire cross section. The developed designs were transferred to the mathematical modelling platform and their strength analysis was made and the displacement (m) and safety coefficients were examined. After examining the suitability of strength results, prototypes of designs were produced. Resistance, current and voltage values were observed by performing 50 load cycle tests for 70 minutes and their suitability (in accordance with VDE 0220 and CENELEC standards) was examined.

___

  • 1. Braunovic, M., 2004. Effect of Connector Design on the Performance of Service Entrance Power Connectors Components and Packaging Technologies, IEEE Transactions on Components and Packaging Technologies, 27, 72-78.
  • 2. Naybour, R. D., Farrell, T., 1973. Connectors for Aluminum Cables: A Study of the Degradation Mechanisms and Design Criteria for Reliable Connectors. IEEE Transactions on Parts, Hybrids and Packaging, 9(1), 30-36.
  • 3. Frank, R. F., Morton, C. P., 2007. Comparative Corrosion and Current Burst Testing of Copper and Aluminum Electrical Power Connectors, IEEE Transactions on Industry Applications, 43(2), 462-468.
  • 4. Mainier, L., 1990. Connection Technique for Aluminum Conductors in LV and MV Power Distribution Systems-Characteristics and Field Experience, Thirty-Sixth IEEE Conference on Electrical Contacts, and the Fifteenth International Conference on Electrical Contacts, Montreal, QC, Canada, 1990, 487-492.
  • 5. Braunovic, M., 1990. Evaluation of Different Contact-aid Compounds for Aluminum-to- copper Connections, Thirty-Sixth IEEE Conference on Electrical Contacts and the Fifteenth International Conference on Electrical Contacts, Montreal, QC, Canada, 1990, 509-517.
  • 6. Joyce, C.F., 1991. A Weibull Model to Characterize Lifetimes of Aluminum Alloy Electrical Wire Connections, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 14(1), 124-133.
  • 7. Braunovic, M., 1994. Aluminium Connections: Legacies of the Past, Proceedings of IEEE Holm Conference on Electrical Contracts, Chicago, IL, USA, 1994, 1-31.
  • 8. Braunovic, M., 1986. Effect of Contact Aid Compounds on the Performance of Bolted Aluminum-to- Aluminum Joints Under Current Cycling Conditions, IEEE Transactions on Components Hybrids and Manufacturing Technology, 9(1), 59-70.
  • 9. Braunovic, M., 1988. Fretting Damage in Tin- plated Aluminum and Copper Connectors, Electrical Contacts, Proceedings of the Thirty Fourth Meeting of the IEEE Holm Conference on Electrical Contacts, San Francisco, USA, 1988, 179-186.
  • 10. Runde, M., Magnusson, N., Lenes, A., 2008. Bolted Connectors for Stranded Aluminum Power Conductors, IEEE Transactions on Power Delivery, 23(2), 523-530.
  • 11. Dang, C., Braunovic, M., 1989. Metallurgic and Contact Resistance Studies of Sleeve Connectors in Aluminium Cable Splices, Proceedings of the Thirty Fifth Meeting of the IEEE Holm Conference on Electrical Contacts, Chicago, USA, 1989, 229-236.
  • 12. Haverkamp, W. B., McKoon, T., Wilck, M., 1999. Bolted Connectors for High Voltage Accessories Installed on Underground Transmission Lines, IEEE Transmission and Distribution Conference (Cat. No. 99CH36333), LA, USA, 1999, 74-82.
  • 13. Tuna, E., Kraus, J., 2016. Design and Production of High Voltage Cable Accessories in Turkey, Güç Sistemleri Konferansı, İstanbul, Türkiye, 34-42.
  • 14. Facilities Engineering Branch Denver Office, August 2000. Facilities Instructions, Standards, and Techniques: Electrical Connections for Power Circuits, Volume 3-3, Denver, Colorado.
  • 15. Sönmez, F., Başak, H., 2016. Sürtünme Karıştırma Kaynağının Yaşlandırılabilir Parçalar Üzerinde Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 29-34.
  • 16. Haim, K., Cisilino, D., Bentkowski, K., 2009. The Behavior of Shear Bolt Connectors in MV - Cable Accessories in Case of Critical Load and Overload, CIRED 2009-20th International Conference and Exhibition on Electricity Distribution-Part 1, Prague, Czech Republic, 2009, 1-4.
  • 17. Yang, F., Zhu, N., Liu, G., Ma, H., Wei, X., Hu, C., Wang, Z., Huang, J., 2018. A New Method for Determining the Connection Resistance of the Compression Connector in Cable Joint, Energies-section Electrical Power and Energy System, 11(7).
  • 18. Hernandez-Guiteras, J., Riba, J., Casals- Torrens, P., 2013. Determination of the Corona Inception Voltage in an Extra High Voltage Substation Connectori, IEEE Transactions on Dielectrics and Electrical Insulation, 20(1), 82-88.
  • 19. Nexans Power Accessories 2017. Bolted Connectors, Ürün Kataloğu.
  • 20. Ruan, J., Liu, C., Huang, D., Zhan, Q., Tang, L., 2016. Hot Spot Temperature Inversion for the Single-core Power Cable Joint, Appl. Therm. Eng., 104, 146-152.
  • 21. Fu, J., Cheng, P., Chen, W., Hu, X., Wang, Q., Yang, Q., Yang, F., 2016. Investigation of the Effects of Insulation Defects on the 3-D Electromagnetic-thermal Coupling Fields of Power Cable Joint, in Proceedings of the IEEE Conference on Industrial Electronics and Applications, Hefei, China, 5-7 Haziran 2016, 1436-1439.
  • 22. Liu, Y., Liu, G., Wang, Z., Xu, T., Xu, U., 2016. Experimental Analysis on Crimping Resistance of Connecting Pipe of Cable Intermediate Joint, Guangdong Electr. Power, 29, 108–112.
  • 23. Ruan, J., Zhan, Q., Tang, L., Tang, K., 2018. Real-time Temperature Estimation of Three-core Medium-voltage Cable Joint Based on Support Vector Regression. Energies, 11, 1405.
  • 24. Yang, F., Cheng, P., Luo, H., Yang, Y., Liu, H., Kang, K., 2016. 3-D Thermal Analysis and Contact Resistance Evaluation of Power Cable Joint, Appl. Therm. Eng., 93, 1183–1192.
  • 25. Kasap, S.O., 2006. Principles of Electronic Materials and Devices (Third ed.), Mc-Graw Hill, Boston, 874.
  • 26. Dag, M., Akcay, N., Koten, H., Guner, K., 2019. Determination of Photovoltaic Properties for Nanostructures. Journal of Electronic Materials, 48(11), 6919-6931.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ