Süt Endüstrisi Arıtma Çamuru Pirolizinde Sıcaklığın ve Parçacık Boyutunun Sentez Gaz Oluşumuna Etkisi

Süt endüstrisi atıksu arıtma çamurları genel itibariyle yüksek miktarda organik içeriğe sahiptir. İhtiva

Effect of Temperature and Particle Size on Diary Industry Treatment Sludge Pyrolysis

Dairy industry wastewater treatment sludge consists of high organic content. The calorific value ofwastewater treatment sludge ensures the use of these wastes as an alternative energy resource. Newtechnologies and alternative energy resources have been researched due to ever-increasing need for energy and limited available energy resources in the world. Pyrolysis is one of the thermochemicaltechnologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solidbiochar, and syngas. This study investigated the change in synthesis gas compounds obtained from thepyrolysis of dairy industry wastewater sludge according to the temperature (500C, 750C) differentparticle size (<0,5 cm, 1-5 cm, 5-10 cm). The highest calorific value of synthesis gas obtained from thetests was calculated as 4394 kcal/m3 with 1-5 cm particle size and at 7500C. Synthesis gas concentrationand calorific values obtained from dairy industry waste water sludge supported that this waste could beused as an alternative energy resource.

___

  • 1. Ridout A., Carrier M., Collard F.X., Görgens J., 2016. Energy Conversion Assessment of Vacuum, Slow and Fast Pyrolysis Processes for Low And High Ash Paper Waste Sludge, Energy Conversion and Management, 111: 103–114
  • 2. Toraman Y., Topal H., 2003. Katı Atık ve Arıtma Çamurlarının Değerlendirilmesinde Alternatif Termal Teknolojiler ve Uygulamaları Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi,18(1):19-33
  • 3. Özcan H.K., Öngen A., Elmaslar Özbaş E., Sivri N., Pangaliyev Y., 2015. Atık Lastiklerden Termokimyasal Yöntemlerle Katı ve Sıvı Ürün Eldesi, 7. Ulusal Katı Atı Yönetimi Kongresi, Gaziantep, Türkiye, 14-16 Ekim 2015.
  • 4. Öngen A., 2011. Endüstriyel Atıklardan Termokimyasal İşlemlerle Sentez Gaz (Syngas) Üretimi, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
  • 5. Ganesapillai M., Manara, P., Zabaniotou A., 2016. Effect of Microwave Pretreatment on Pyrolysis of Crude Glycerol-Olive Kernel Alternative Fuels, Energy Conversion and Management 110: 287–295.
  • 6. Chen W., Shi S., Zhang J., Chen M., Zhou, X., 2016. Co-pyrolysis of Waste Newspaper with High-Density Polyethylene: Synergistic Effect and Oil Characterization, Energy Conversion and Management, 112: 41–48.
  • 7. Haydarya J., Susa D., Gelinger V., Cacho F. 2016. Pyrolysis of Automobile Shredder Residue in a Laboratory Scale Screw Type Reactor, Journal of Environmental Chemical Engineering, 4: 965–972
  • 8. Pangaliyev Y., 2014. Ömrünü Tamamlamış Lastiklerden Piroliz/Gazlaştırma ile Değerlendirilebilir Ürün Eldesi, Master Tezi, Istanbul Universitesi Fen Bilimleri Enstitüsü.
  • 9. Chhiti Y., Kemiha M., 2013. Thermal Conversion of Biomass, Pyrolysis and Gasification: A Review, The International Journal of Engineering And Science, 2 (3), 75- 85.
  • 10. Tripathi M., Sahu J.N., Ganesan P., 2016. Effect of Process Parameters on Production Of Biochar From Biomass Waste Through Pyrolysis: A Review, Renewable and Sustainable Energy Reviews, 55: 467-481.
  • 11. Basu, P., 2010. Biomass Gasification and Pyrolysis, Elsevier, ISBN: 978-0-12-374988-8
  • 12. Aşık B.B., Katkat A.H., 2004. Gıda Sanayi Arıtma Tesisi Atığının (Arıtma Çamuru) Tarımsal Alanlarda Kullanım Olanakları Uludag Üniversitesi Ziraat Fakültesi Dergisi, 18(2): 59-71.
  • 13. Gürtekin E., 2009. Ardışık Kesikli Reaktörde Süt Endüstrisi Atıksularının Biyolojik Arıtımı, Selçuk Üniversitesi Müh-Mim. Fakültesi Dergisi, 24(1): 1-6.
  • 14. Han R., Zhao C., Liu J., Chen A., Wang H., 2015. Thermal Characterization and Syngas Production from the Pyrolysis of Biophysical Dried and Traditional Thermal Dried Sewage Sludge, Bioresource Technology, 198: 276 282.
  • 15. Omoriyekomwan J.E., Tahmasebi A., Yu J., 2016. Production of Phenol-rich Bio-oil During Catalytic Fixed-bed and Microwave Pyrolysis of Palm Kernel Shell, Bioresource Technology, 207: 188–196
  • 16. Chen W., Shi S., Zhang J., Chen M., Zhou X., 2016. Co-pyrolysis of Waste Newspaper with High-Density Polyethylene: Synergistic Effect and Oil Characterization, Energy Conversion and Management 112: 41–48.
  • 17. Bartocci P., D’Amico M., Moriconi N., Bidini G., Fantozzi F., 2015. Pyrolysis of Olive Stone for Energy Purposes, Energy Procedia, 82: 374-380.
  • 18. Han R., Zhao C., Liu C., Chen A., Wang H., 2015. Thermal Characterization and Syngas Production from the Pyrolysis of Biophysical Dried and Traditional Thermal Dried Sewage Sludge, Bioresource Technology, 198: 276- 282.
  • 19. Liu G., Song H., Wu J., 2015. Thermogravimetric Study and Kinetic Analysis of Dried Industrial Sludge Pyrolysis, Waste Management, 41: 128–133.
  • 20. Yuan H., Lu T., Huang H., Zhao D., Kobayashi N., Chen Y., 2015. Influence of Pyrolysis Temperature on Physical and Chemical Properties of Biochar made from Sewage Sludge, Journal of Analytical and Applied Pyrolysis, 112: 284–289.
  • 21. SM 2540 E, 1998. Standard Methods for the Examination of Water and Wastewater 20th Edition, Franson.M.H., American Public Health Association, ISBN:0-87553-235-7.
  • 22. SM 2540 B, 1998. Standard Methods for the Examination of Water and Wastewater 20th Edition, Franson.M.H., American Public Health Association, ISBN:0-87553-235-7.
  • 23. Waldheim L, Nilsson T., 2001. Heating Value of Gases From Biomass Gasification. Report prepared for: IEA Bioenergy Agreement, Task 20 - Thermal Gasification of Biomass, Report no: TPS-01/16, TPS Termiska Processer AB.