On $\rho -$ Statistical convergence of sequences of Sets

On $\rho -$ Statistical convergence of sequences of Sets

In this paper we introduce the concepts of Wijsman $\rho-$statistical convergence, Wijsman strongly $\rho-$statistical convergence and Wijsman $\rho-$strongly $p-$ summability. Also, the relationship between these concepts are given. \newline\newline \textbf{Keywords:} Ces\`{a}ro summability, Statistical convergence, Strongly $p-$Ces\`{a}ro summability, Wijsman convergence.

___

  • 1 H. Altınok, M. Et, R. Çolak, Some remarks on generalized sequence space of bounded variation of sequences of fuzzy numbers, Iran. J. Fuzzy Syst. 11(5) (2014), 39–46.
  • 2 V. K. Bhardwaj, S. Dhawan, f-statistical convergence of order $\alpha $ and strong Cesàro summability of order $\alpha $ with respect to a modulus, J. Inequal. Appl. 332 (2015), 14 pp.
  • 3 A. Caserta, G. Di Maio, L. D. R. Kocinac, Statistical convergence in function spaces, Abstr. Appl. Anal., (2011), Article ID 420419, 11 pp.
  • 4 J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), 47–63.
  • 5 H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995), 113–119.
  • 6 H. Çakallı , B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 234 (2012), 11 pp.
  • 7 H. Çakallı, A variation on ward continuity, Filomat 27(8) (2013), 1545–1549.
  • 8 H. Çakallı, A variation on statistical ward continuity, Bull. Malays. Math. Sci. Soc. 40 (2017), 1701-1710.
  • 9 M. Çınar, M. Karaka¸s, M. Et, On pointwise and uniform statistical convergence of order $\alpha $ for sequences of functions, Fixed Point Theory Appl. 33 (2013), 11 pp.
  • 10 R. Çolak, Statistical convergence of order $\alpha $, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010 (2010) 121–129.
  • 11 R. Çolak, On $\lambda $-Statisitical Convergence, Conference on Summability and Applications, (2011) Istanbul Commerce Univ. May 12-13, ˙Istanbul.
  • 12 M. Et, A. Alotaibi, S. A. Mohiuddine, On $(\Delta ^{m},I)-$ statistical convergence of order $\alpha$, The Scientific World Journal, (2014), Article ID 535419, 5 pages.
  • 13 M. Et, H. ¸ Sengül, Some Cesaro-type summability spaces of order $\alpha$ and lacunary statistical convergence of order $\alpha$, Filomat, 28(8), (2014), 1593–1602.
  • 14 M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order $\alpha$ of sequences of fuzzy mappings, Kuwait J. Sci. 41(3) (2014), 17–30.
  • 15 M. Et, R. Çolak, Y. Altın, Strongly almost summable sequences of order $\alpha$, Kuwait J. Sci. 41(2) (2014), 35–47.
  • 16 H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
  • 17 J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
  • 18 A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129–138.
  • 19 M. Işık, K. E. Akbaş, On $\lambda -$statistical convergence of order $\alpha $ in probability, J. Inequal. Spec. Funct. 8(4) (2017), 57–64.
  • 20 F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87–99.
  • 21 T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
  • 22 E. Savaş, M. Et, On $(\Delta _{\lambda }^{m},I)-$\statistical convergence of order $\alpha $, Period. Math. Hungar. 71(2) (2015), 135–145.
  • 23 I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
  • 24 H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
  • 25 H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order $\left( \alpha ,\beta \right) $, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017), 80–90.
  • 26 U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math. 4(2) (2012), 99–109.
  • 27 U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat 28(8) (2014), 1567–1574.