On Generalized Sister Celine's Polynomials

On Generalized Sister Celine's Polynomials

In this research, we establish some properties for the generalized Sister Celine's polynomials. We derive various families of multilinear and multilateral generating functions for a family of generalized Sister Celine's polynomials.

___

  • [1] M. Celine Fasenmyer Sister, Some generalized hypergeometric polynomials, Bull. Amer. Math. Soc., 53 (1947), 806-812.
  • [2] E. D. Rainville, Special Function, Macmillan, New York, 1960.
  • [3] K. Ahmad, M. Kamarujjama, M. Ghayasuddin, On generalization of Sister Celine’s polynomials, Palest. J. Math., 5 (1) (2016), 105-110.
  • [4] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press, John Wiley and Sons, New York, 1984.
  • [5] E. Erkus-Duman, A. Altın, R. Aktas, Miscellaneous properties of some multivariable polynomials, Math. Comput. Modelling, 54 (2011), 1875-1885.
  • [6] A. Altın, E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transform. Spec. Funct., 17 (4) (2006), 239-244.
  • [7] C. Kaanoglu, M. A. Ozarslan, Two-parameter Srivastava polynomials and several series identities, Adv. Difference Equ., 81 (2013), 1-9.
  • [8] N. Ozmen, E. Erkus-Duman, On the Poisson-Charlier polynomials, Serdica Math. J., 41 (2015), 457-470.
  • [9] N. Ozmen, E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conf. Proc., 1558 (2013), 1124-1127.
  • [10] N. Ozmen, E. Erkus-Duman, Some families of generating functions for the generalized Cesáro polynomials, J. Comput. Anal. Appl., 25 (4) (2018), 670-683.