Global Existence of Solutions for a Coupled Viscoelastic Plate Equation with Degenerate Damping Terms

Global Existence of Solutions for a Coupled Viscoelastic Plate Equation with Degenerate Damping Terms

We investigate a viscoelastic plate nonlinear system with degenerate damping terms on a bounded domain Rn with Dirichlet boundary conditions. The nonlinearities f1(u; v) and f2(u; v) act as a strong source in the system. Under some restriction on the parameters in the system, we prove the global existence result of weak solution.

___

  • 1 J. M. Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity 44(1)(1996), 61-87.
  • 2 F. Alabau-Boussouira, P. Cannarsa, D. Sforza, Decay estimates for the second order evolution equation with memory, J. Funct. Anal. 245(5) (2008), 1342-1372.
  • 3 S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl. 265(2) (2002), 296-308.
  • 4 S. T. Wu, General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms, J. Math. Anal. Appl. 406 (2013), 34-48.
  • 5 E. Pis ̧kin, F. Ekinci, K. Zennir, Local existence and blow-up of solutions for coupled viscoelastic wave equations with degenerate damping terms, Theoret. Appl. Mech. 47(1) (2020), 123-154.
  • 6 E. Pis ̧kin, F. Ekinci, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms, Math. Method Appl. Sci. 42(16) (2019), 1-21.
  • 7 S. Kim, JY. Park, YH. Kang, Stochastic quasilinear viscoelastic wave equation with degenerate damping and source terms, Comput. Math. Appl. 75(11) (2018), 3987-3994.
  • 8 X. Han, M. Wang, Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source, Math. Nachr. 284(5-6) (2011), 703-716.
  • 9 M. A. Rammaha, S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal-Theor. 72 (2010), 2658-2683.