Finitely g-Supplemented Modules

Finitely g-Supplemented Modules

Let M be an R-module. If every finitely generated submodule of M has a g-supplement in M, then M is called a finitely g-supplemented (or briefly fg-supplemented) module. In this work, some properties of these modules are investigated.

___

  • 1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
  • 2 B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864.
  • 3 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352.
  • 4 C. Nebiyev, On a Generalization of Supplement Submodules, Int. J. of Pure and Appl. Math. 113 (2) (2017), 283-289.
  • 5 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
  • 6 D. X. Zhou, X. R. Zhang, Small-Essential Submodules and Morita Duality, Southeast Asian Bull. of Math., 35 (2011), 1051-1062.