Existence of solution to a nonlocal conformable fractional thermistor problem

We study a nonlocal thermistor problem for fractional derivatives in the conformable sense. Classical Schauder's fixed point theorem is used to derive the existence of a tube solution.

___

  • Machado, J. T., Kiryakova, V. and Mainardi, F., A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal. 13 (2010), no. 4, 447--454.
  • Machado, J. T., Kiryakova, V. and Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 3, 1140--1153.
  • Agarwal, R. P., Baleanu, Du., Nieto, J. J., Torres, D. F. M. and Zhou, Y., A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math. 339 (2018), 3--29.
  • Ortigueira, M. D., Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering, 84, Springer, Dordrecht, 2011.
  • Podlubny, I., Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
  • Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J. J., Fractional calculus, Series on Complexity, Nonlinearity and Chaos, 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
  • Miller, K. S. and Ross, B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
  • Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
  • Baleanu, D., Golmankhaneh, A. K., Golmankhaneh, A. K. and Nigmatullin, R. R., Newtonian law with memory, Nonlinear Dynam. 60 (2010), no. 1--2, 81--86.
  • Caputo, M., Linear models of dissipation whose Q is almost frequency independent. II, Geophys. J. R. Astr. Soc. 13 (1967), no. 5, 529--539.
  • Caputo, M. and Mainardi, F., Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II) 1 (1971) 161--198.
  • Hilfer, R., Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
  • Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291--348, CISM Courses and Lect., 378, Springer, Vienna, 1997.
  • Khalil, R., Al Horani, M., Yousef. A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65--70.
  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57--66. chung : Chung, W. S. Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math. 290 (2015), 150--158.
  • Ünal, E., Gökdogan, A. and Çelik, E., Solutions of sequential conformable fractional differential equations around an ordinary point and conformable fractional Hermite differential equation, British J. Appl. Science & Tech. 10 (2015), 1--11.
  • Benkhettou, N., Hassani, S. and Torres, D. F. M., A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci. 28 (2016), no. 1, 93--98.
  • Eslami, M. and Rezazadeh, H., The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo 53 (2016), no. 3, 475--485.
  • Lazo, M. J. and Torres, D. F. M., Variational calculus with conformable fractional derivatives, IEEE/CAA J. Autom. Sin. 4 (2017), no. 2, 340--352.
  • Bayour, B., Hammoudi, A. and Torres, D. F. M., A truly conformable calculus on time scales, Glob. Stoch. Anal. 5 (2018), no. 1, 1--14.
  • Feng, Q. and Meng, F., Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative, Adv. Difference Equ. 2018, 2018:193.
  • Gholami, Y. and Ghanbari, K., New class of conformable derivatives and applications to differential impulsive systems, SeMA J. 75 (2018), no. 2, 305--333.
  • Kareem, A. M., Conformable fractional derivatives and it is applications for solving fractional differential equations, IOSR J. Math. 13 (2017), 81--87.
  • Ünal, E. and Gökdogan, A., Solution of conformable fractional ordinary differential equations via differential transform method, Optik -- Int. J. Light and Elect. Optics, 128 (2017), 264--273.
  • Rochdi, K., Solution of some conformable fractional differential equations, Int. J. Pure Appl. Math. 103 (2015), no. 4, 667--673.
  • Bartosz, K., Janiczko, T., Szafraniec, P. and Shillor, M., Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction, Appl. Anal. 97 (2018), no. 8, 1432--1453.
  • Hrynkiv, V. and Turchaninova, A., Analytical solution of a one-dimensional thermistor problem with Robin boundary condition, Involve 12 (2019), no. 1, 79--88.
  • Mbehou, M., The theta-Galerkin finite element method for coupled systems resulting from microsensor thermistor problems, Math. Methods Appl. Sci. 41 (2018), no. 4, 1480--1491.
  • Sidi Ammi, M. R. and Torres, D. F. M., Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order derivatives, Differ. Equ. Appl. 4 (2012), no. 2, 267--276.
  • Sidi Ammi, M. R., Jamiai, I. and Torres, D. F. M., Global existence of solutions for a fractional Caputo nonlocal thermistor problem, Adv. Difference Equ. 2017 (2017), no. 363, 14 pp.
  • Sidi Ammi, M. R. and Torres, D. F. M., Existence and uniqueness results for a fractional Riemann-Liouville nonlocal thermistor problem on arbitrary time scales, J. King Saud Univ. Sci. 30 (2018), no. 3, 381--385.
  • Vivek, D., Kanagarajan, K., Sivasundaram, S., Dynamics and stability results for Hilfer fractional type thermistor problem, Fractal Fract. 1 (2017), 5, 14 pp.
  • Bayour, B. and Torres, D. F. M., Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math. 312 (2017), 127--133.
  • Granas, A. and Dugundji, J, Fixed point theory, Springer Monographs in Mathematics, Springer, New York, 2003.
  • Li, C. and Sarwar, S., Existence and continuation of solutions for Caputo type fractional differential equations, Electron. J. Differential Equations 2016 (2016), Paper No. 207, 14 pp.