Approximation properties of modified q-Bernstein-Kantorovich operators

In the present paper we define a q-analogue of the modified Bernstein-Kantorovich operators

___

  • Acu, A.M., Stancu-Schurer-Kantorovich operators based on q-integers, Appl. Math. and Comput., 259, (2015), 896-907.
  • Acu, AM, Sofonea, F, Barbosu, D., Note on a q-analogue of Stancu-Kantorovich operators, Miskolc Mathematical Notes, 16(1), (2015), 3-15.
  • Acu, A.M., Manav, N., Sofonea, D.F., Approximation properties of λ-Kantorovich operators, J. Inequal. Appl., (2018), 2018:202.
  • Acu, A.M., Muraru, C.V., Sofonea, D.F., Radu, V.A.:, Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators, Mathematical Methods in Applied Science, 39(18), (2016), 5636-5650.
  • Acu, A.M., Acar, T., Muraru, C.V., Radu, V.A., Some approximation properties by a class of bivariate operators, Mathematical Methods in the Applied Sciences, 42 (2019), 1-15, https://doi.org/10.1002/mma.5515
  • Altomare, F., Cappelletti, M. M. and Leonessa, V., On a generalization of Szasz-Mirakjan-Kantorovich operators, Results Math. 63(3-4), (2013), 837-863.
  • Aral, A., Gupta, V. and Agarwal, R. P., Applications of q-Calculus in Operator Theory, Springer, 2013.
  • Badea, C., Badea, I. and Gonska, H. H., Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl. 4, (1988), 95-108.
  • Başcanbaz-Tunca, G., Erençin, A., Ince-Ilarslan, H.G., Bivariate Cheney-Sharma operators on simplex, Hacettepe Journal of Mathematics and Statistics, 47(4), (2018), 793-804.
  • Bögel, K., Mehrdimensionale Differentiation von Funtionen mehrerer Veränderlicher, J. Reine Angew. Math. 170, (1934), 197-217.
  • Bögel, K., Über die mehrdimensionale differentiation, Jahresber. Deutsch. Math.-Verein., 65 (1962), 45-71.
  • Bögel, K., Über die mehrdimensionale differentiation, integration und beschränkte variation, J. Reine Angew. Math., 173, (1935), 5-29
  • Butzer, P.L., Berens, H., Semi-groups of Operators and Approximation, Springer, New York, 1967.
  • Ditzian, Z. and Totik, V., Moduli of smoothness, volume 9 of Springer Series in Computational Mathematics, SpringerVerlag, New York, 1987.
  • Gadjiev, A. D., Theorems of the type of P. P. Korovkin's theorems, Mat. Zametki 20 (5) (1976), 781-786. ((in Russian), Math. Notes 20(5-6) (1976), 995-998 (Engl. Trans.)).
  • Gonska, H., Heilmann M. and Rasa I., Kantorovich operators of order k, Numer. Funct. Anal. Optim., 32(7), (2011), 717-738.
  • Gupta, V., Rassias, T. M., Agarwal, P.M. and Acu, A. M., Recent Advances in Constructive Approximation Theory, Springer, Cham, 2018.
  • Kajla, A., Agrawal, P. N., Szász-Kantorovich type operators based on Charlier polynomials, Kyungpook Math. J., 56(3), (2016), 877-897.
  • Kajla, A., Goyal, M., Modified Bernstein-Kantorovich operators for functions of one and two variables, Rendiconti del Circolo Matematico di Palermo, (2017), DOI10.1007/s12215-017-0320-z.
  • Lupas, A., A q-analogue of the Bernstein operators, Semianr on Numerical and Statistical Calculus, University of Cluj-Napoca, 9 (1987), 85-98.
  • Lupaş, A., q-Analogues of Stancu operators, Mathematical Analysis and Approximation Theory, Burg Verlag , 2002, 145-154.
  • Marchaud, A., Sur les Derivées et sur les Différences des Fonctions de Variables Réclles, J. Math. Pures et Appl. 6 (1927), 337-426.
  • Muraru, C.V., Acu, A.M., Radu, V.A., On the monotonicity of q-Schurer-Stancu type polynomials, Miskolc Mathematical Notes, 19(1), (2018), 19-28.
  • Özarslan, M. A., Duman, O., Smoothnesss properties of modified Bernstein-kantorovich operators, Numer. Func. Anal. Opt. 37 (1) (2016), 92-105.
  • Phillips, G. M., Bernstein polynomials based on q-integers, Ann. Numer. Math., 4 (1997), 511-518.
  • Shisha, O. and Mond, P., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA 60, (1968), 1196-1200.
  • Sucu, S., Ibikli, E., Approximation by means of Kantorovich-Stancu type operators, Numer. Funct. Anal. Optim., 34(5), (2013), 557-575.
  • Thomae, J., Beiträge zue Theorie der durch die Heineshe Reihe., J. Reine Angew Math. 70, (1869), 258-281.