Havza Morfometrik Özelliklerinin Taşkın Üretmedeki Rolü Biga Çayı Havzası Örneği

Bu çalışmanın amacı, Biga Çayı havzasında meydana gelen uzun süreli taşkın olaylarının nedenlerinin havza ve alt havza morfometrisi bakımından araştırılmasıdır. Bu kapsamda Biga Çayı havzası alt havzalara ayrılarak, alt havzaların morfometrik özellikleri belirlenmiş ve bu özelliklere bağlı taşkın üretme potansiyelleri incelenmiştir. Ana akarsu kolu üzerinde oluşan tarihsel taşkınların meydana gelmesinde alt havzaların çizgisel (bir boyutlu), alansal (iki boyutlu) ve relief (üç boyutlu) morfometrik özellikleri dikkate alınarak kendi aralarında taşkın etki düzeyleri ve potansiyelleri ortaya konmuştur. Bu morfometrik parametrelerin incelenmesinde ve kantitatif yönden değerlendirilmesinde 1:25000 ölçekli topografya haritalarından üretilmiş 10 m çözünürlüğe sahip SYM (Sayısal Yükselti Modeli), temel altlık veri olarak kullanılmıştır. Akarsu ağlarının üretilmesi ve ağ analizleri için D8 akış ve Strahler yöntemleri kullanılmıştır. Biga Çayı alt havzalarında elde edilen havza morfometrik değerleri kendi içinde sınıflandırılarak alt havzaların ana akarsu kolu üzerindeki taşkın üretme potansiyelleri ortaya konmuştur. Buna göre, havza morfometrisi açısından değerlendirilen Biga Çayı havzasında, Biga alt havzası ana kol üzerinde taşkın üretme bakımından en fazla etkiye sahip alt havza olarak tespit edilmiştir.

The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin

This study aims to investigate the causes behind the constant flooding in the Biga River basin. It aims to determine if the river sub-basins’s morphometric features was the reason behind the floods. Historical data from previous floodings were used to create the linear (one-dimensional), areal (two-dimensional), and relief (three-dimensional) morphometric properties of the sub-basins. These parameters were then evaluated quantitatively and a Digital Elevation Model (DEM) with 10 m resolution produced from 1:25000 scale topography maps as the base data. The D8 flow and Strahler methods were alos used as part of this study. The values obtained from the sub-basins of the Biga River were then weight and the potential to generate floods on the main stream of the sub-basins were evaluated. Our final conclusion indicates that the Biga sub-basin has indeed a major effect on flooding of the main channel of the Biga River.

Kaynakça

Alaghmand, S., Bin-Abdullah, R., Abustan, I., Vosoogh, B. (2010). GISbased River Flood Hazard Mapping in Urban Area: A Case Study in Kayu Ara River Basin, Malaysia. Int. J. Eng. Technol. 2, 488–500.

Ajay, P., Mahmoud, K., Vijay, S., Paru, T. P., Joy, J, Nayan, P., & Kalubarme, M. H. (2014). Morphometric and land use analysis for watershed prioritization in Gujarat State, India. International Journal of Scientific & Engineering Research, 5(2), 1–7.

Al Saud, M. (2009). Morphometric analysis of wadi aurnah drainage system, Western Arabian Peninsula. The Open Hydrology Journal, 3, 1–10.

Altaf, F., Meraj, G., & Romshoo, S. (2013). Morphometric analysis to ınfer hydrological behaviour of Lidder watershed. Western Himalaya, India, Geography Journal, 2013, 1–14.

Baker, V.R., Kochel, R.C., Paton, P.C. (1988). Flood geomorphology. NewYork, NY: Wiley-Interscience

Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3), 155–166.

Deniz, O., Baba, A. ve Tarcan, G. (2010). Çan jeotermal alanı’nın hidrojeokimyasal ve hidrojeolojik incelenmesi. Türkiye Jeoloji Bülteni, 53(2–3), 159–184.

Devlet Su İşleri Genel Müdürlüğü. (2017). Çınarköprü ve akkayrak akım gözlem istasyonu günlük akım verileri. Devlet Su İşleri Genel Müdürlüğü’nden elde edilir http://www.dsi.gov.tr/ Diakakis, M. 2011. A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece. Natural Hazards, 56, 803–814.

Duong, N. V., & Gourbesville, P. (2016). Model uncertainity in flood modelling. Case study at Vu Gia Thu Bon catchment-Vietnam. 12th International Conference on Hydroinformatics. Procedia Engineering, 154, 450–458.

Efe, R. (1999). Güney Marmara Bölümü batısında toprak oluşumunu etkileyen faktörler ve toprakların özellikleri. Türk Coğrafya Dergisi, 34, 193–209.

Farhan, Y., Anaba, O., & Salim, A. (2016). Morphometric analysis and flash floods assessment for drainage basins of the Ras En Nawb Area, South Jordan using GIS. Journal of Geoscience and Environment Protection, 4, 9–33.

Grimaldi, S., Petroselli, A., Tauro, F., & Porfiri, M. (2012). Times of concentration: A paradox in modern hydrology. Hydrological Sciences Journal, 57(2), 217–228.

Hijmans, R. J., Cameron, E. S., Parrai L. J., Jones, G. P., & Jarvis, A. (2005). Very high resolution interpolated climate surface for global land areas. International Journal of Climatology, 25, 1965–1978.

Horton, R. E. (1932). Drainage basin characteristics. Eos Transcations American Geophysical Union, 13, 350–361.

Horton, R. E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275–370.

Huang, X.J., & Niemann, J.D. (2006). Modelling the potential impacts of groundwater hydrology on longterm drainage basin evolution. Earth Surface Processes and Landforms 31(14), 1802–1823. J enson S. K., & Domingue J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering Remote Sensing, 54, 1593–1600.

Keller, E. A., & Pinter, N. (Eds.). (2002). Active tectonics: earthquakes, uplift, and landscape. New Jersey, NJ: Prentice Hall.

Keskin, F. (2012). Quantitative flood risk assessment with applicaton ın Turkey. (Doctoral dissertation). Retrieved from https://etd.lib.metu. edu.tr/upload/12615024/index.pdf

Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362.

Kleinen, T., & Petschel-Held, G. (2007). Integrated assessment of changes in flooding probabilities due to climate change. Climate Change, 81, 283–312.

Kundzewicz Z.W, Schellnhuber H.J. (2004). Floods in the IPCC TAR perspective. Nat Hazards, 31(1), 111–128. https://doi.org/10.1023/ B:NHAZ.0000020257.09228.7b

Mahmoud, A. S., & Gloaguen, R. (2012). Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, China University of Geoscience, 3(4), 407–428.

Mayer, L. (1990). Introduction to quantitative geomorphology. Englewood Cliffs, New Jersey, NJ: Prantice-Hall International Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517.

Maden Tetkik ve Arama. (2002). 1:500 000 ölçekli Türkiye jeoloji haritaları, İstanbul-İzmir paftası. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.

Moglen, G. E., & Bras, R.L. (1995) The effect od spatial heterogeneities on geomorphic epression in a model of basin evolution. Water Resources Research, 31, 2613-2623.

O’Callaghan J., & Mark D. M. (1984) The extraction of drainage networks from digital elevation data. Computer Vision Graph Image Process, 28, 323–344.

Ouma, U. Y., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using ıntegrated multi-parametric ahp and GIS: Methodological overview and case study assessment. Water, 6, 1515–1545.

Oruonye, E. D., Ezekiel, B. B., Atiku, H. G., E. Baba, E., & Musa, N. I. (2016). Drainage basin morphometryic parameter of river Lamurde: Implication for hydrologic and geomorphic process. Journal of Agriculture and Ecology Research International, 5(2), 1–11.

Oruonye, E. D. (2016). Morphometry and flood in small drainage basin: Case study of Mayogwoi River Basin in Jalingo, Taraba State Nigeria. Journal of Geography, Environment and Earth Science International, 5(1), 1–12.

Özdemir, H. (2007). Havran çayı havzasının (Balıkesir) CBS ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Özdemir, H. (2011). Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları: Sistematik ve bölgesel. D. Ekinci (Ed.), Havza morfometrisi ve taşkınlar içinde (s. 507–526). İstanbul: Türk Coğrafya Kurumu Yayınları.

Özdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and dem in point of floods. Enviromental Geology, 56, 1405–1415.

Pachauiri, R.K, & Reisinger, A. (2007). IPCC fourth assessment report. Geneva, Switzerland: IPCC.

Patton, P. C. (1988). Drainage basin morphometry and floods. In V. Baker, C. Kochel and P. Patton (eds.), Floods Geomorphology (pp. 51–64). New York, NY: Wiley-Interscience.

Patil., P. S. V., & Mali., P. S. (2013). Watershed charachterization and prioritization of Tulasi subwatershed: A geospatial approach. International Journal of Innovative Research in Science, Engineering and Technology, 2(6), 2182–2188.

Pareta, K., & Pareta, U. (2011). Quantitative morphometric analysis of a watershed of Yamuna Basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosiıences, 2(1), 248–269.

Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, Hypsometric integral and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82, 1079–1083.

Rana, N., Singh, S., Sundriyal, P. Y., Rawat, S. G., & Juyal, N. (2016). Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley. Journal of Earth System Science, 125(4), 841–854.

Ramu., & Mahalingam, B. (2012). Hypsometric properties of drainage basins in Karnataka using geographical information system. New York Science Journal, 5(12), 156–158.

Reddy, G.P.O, Maji A.K, & Gajbhiye, K.S. (2004). Drainage morphometry and its influence on landform characteristics in basaltic terrain, central India—a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1–16.

Ritter, D.F., Kochel, R.C., & Miller, J.R. (1995). Process geomorphology. Dubuque, IA: William C. Brown. Samela, C., Manfreda, S., Paola, D. F., Giugni, M., Sole, A., &

Fiorentino, M. (2016). Dem-based approaches for the delineation of flood-prone areas in an ungauged basin in Africa. Journal of Hydrologic Engineering, 21(2), 1–10.

Sanders, B. F. (2007). Evaluation of on-line DEMs for flood inundations modeling. Advances in Water Resources, 30, 1831–1843.

Sarp, G., Gecen, R., Toprak V., & Duzgun, S. (2011, April). Morphotectonic properties of Yenicaga Basin area in Turkey. 34th International Symposium on Remote Sensing of Environment, Sydney, Australia.

Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bulletin, 67, 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0. CO;2

Siyako, M., Bürkan, K. A. ve Okay, İ. A. (1989). Biga ve Gelibolu Yarımadalarının tersiyer jeolojisi ve hidrokarbon olanakları. Türkiye Petrol Jeologları Derneği, 1(3), 183–199.

Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248, 655–668.

Strahler, A. N. (1952). Quantitative analysis of watershed geomorphology. Transamer Geophys Union, 38, 913–920.

Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In Chow, V.T. (ed.), Handbook of applied hydrology (pp. 439-476). New York, NY: McGraw Hill.

Şencan, A. (2007). Biga çayı batı kesiminin jeomorfolojisi. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Eesterbrooks, D. J. (1969). Principles of geomorphology. New York, NY: McGraw Hill.

Tarboton, D.G., Bras, R. L., and Rodriguez–Iturbe.1(992). A physical basis for drainage density. Geomorphology. 5 59–76.

Tekkanat, İ. S. (2015). Porsuk çayı havzasında yağış şiddeti ile akarsu akımları arasındaki ilişki ve eğilimlerin analizi. (Yüksek Lisans Tezi). Çanakkale 18 Mart Üniversitesi Sosyal Bilimler Enstitüsü, Çanakkale.

Türkeş, M., Erginal, E., Demirci, A. ve Ekinci, Y. L. (2008). Çanakkale yöresi Ambaroba ve Mazılık heyelanlarının jeofiziksel, klimatolojik ve jeomorfolojik analizi. M. Kadıoğlu & A. Duran Şahin (Ed.), 5. Atmosfer Bilimleri Sempozyumu bildiriler kitabı içinde (s. 461– 474). İstanbul: İstanbul Teknik Üniversitesi.

Türkeş, M., & Tatlı, H. (2011). Türkiye yağış bölgelerinin spektral kümeleme tekniğiyle belirlenmesi. In Proceedings of the National Geographical Congress with International Participation (CD-R). Istanbul: Türk Coğrafya Kurumu.

United Nations Office for Disaster Risk Reduction. (2002). Guidelines for reducing flood losses. Retrieved from https://www.unisdr.org/ we/inform/publications/558

United Nations Office for Disaster Risk Reduction., & Centre for Research on the Epidemiology of Disasters. (2015). The human cost of weather related disasters 1995-2015. Retrieved from https://www.unisdr.org/2015/docs/climatechange/COP21_ WeatherDisastersReport_2015_FINAL.pdf

Verstappen, H. T. (1983). Applied geomorphology. Enschede, NL: ITC.

Willgoose, G., & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surf Processes Landform, 23(7), 611–623.

Zavoianu, I. (1985). Morphometry of drainage basins. In Developments in water science (Vol. 20). Amsterdam, Netherlands: Elsevier.

Kaynak Göster