Amaç: Juniperus communis L., özellikle Avrasya'da yetişen ve Cupressaceae L. ailesine ait bir çalıdır. Juniperus communis L. meyvelerinin sulu ekstraktının antioksidan ve antidiyabetik aktivitesi, streptozotosin ile indüklenmiş diyabetik albino sıçanlarında potansiyel bir antidiyabetik olarak fayda göstermiştir. Bu çalışma, Juniperus communis L. yağı takviyesinin diyabetik sıçanlarda böbrek fonksiyon bozukluğunu etkili bir şekilde iyileştirip iyileştirmeyeceğini belirlemek amacıyla yapılmıştır. Yöntem: Yirmi sekiz sıçan 4 eşit gruba ayrılmıştır; kontrol grubu, diyabetik grup, Juniperus communis L. yağı (200 mg / kg) ile tedavi edilen grup ve diyabetik + Juniperus communis L. yağı (200 mg / kg) ile tedavi edilen grup. Deney sonunda tüm sıçanlar sakrifiye edildi ve tüm grupların böbrek antioksidan ve lipid peroksidasyon belirteçleri ile serum kreatinin, serum üre, kan üre azotu (BUN) ve serum total protein düzeyleri gibi böbrek fonksiyon parametreleri ölçüldü. Bulgular: Diyabetik grupta HbA1c, serum glukoz, serum üre, serum kreatinin, BUN ve böbrek lipit peroksidasyon düzeyleri kontrol grubuna kıyasla artmış, ancak serum total protein ve antioksidan düzeyleri azalmıştır (p<0,05). Ayrıca Juniperus communis L. yağı ile tedavi edilen diabetik sıçanların HbA1c, serum glukoz, serum üre, serum kreatinin, BUN ve böbrek lipid peroksidasyon düzeylerini azalırken serum total protein ve antioksidan düzeyleri artmıştır (p <0,05). Sonuç: Bu çalışma, diabetes mellitus ve diyabetik nefropati arasında bir bağlantı olduğunu kanıtlamakta ve Juniperus communis L. yağının, böbrek fonksiyon testleri üzerinde iyileşmeye ve oksidatif stres parametrelerinde azalmaya neden olarak böbrek üzerinde koruyucu bir etki sağladığını göstermektedir.

Can Juniperus communis L. oil improve nephropathy in diabetic rats

Objective: Juniperus communis L. is a shrub belonging to family Cupressaceae L. mainly growth in Eurasia. The antioxidant and antidiabetic activity of aqueous extract of J. communis L. berries indicated benefits as a potent antidiabetic in streptozotocin induced diabetic albino rats. This study was carried out to determine whether J.  communis L. oil supplement will effectively manage renal dysfunction in diabetic rats.Methods: Twenty eight rats were divided into 4 equal groups as follows; control group, diabetic group, J. communis L. oil (200 mg/kg) treated group, and diabetic+J. communis L. oil (200 mg/kg) treated group. At the end of the experimental period, all rats were sacrificed and renal function parameters such as kidney antioxidant and lipid peroxidation markers and serum creatinine, serum urea, blood urea nitrogen (BUN), and serum total protein levels were measured in all groups. Results: HbA1c, serum glucose, serum urea, serum creatinine, BUN, and kidney lipid peroxidation levels increased but serum total protein and antioxidant levels decreased in diabetic group comparing with control group (p<0.05). Furthermore, HbA1c, serum glucose, serum urea, serum creatinine, BUN, and kidney lipid peroxidation levels decreased and also, serum total protein and antioxidant levels increased in diabetic group treated with J. communis L. oil comparing with diabetic group (p<0.05). Conclusion: This study has provided direct evidence of a link between diabetes mellitus and diabetic nephropathy and demonstrated that J.  communis L. oil provide a protective effect on the kidney as evidenced by an improvement of the renal function tests as well as reduction in oxidative stress parameters.

___

  • 1. Ramachandran S, Rajasekaran A, Adhirajan N. In vivo and in vitro antidiabetic activity of Terminalia paniculata bark: An evaluation of possible phytoconstituents and mechanisms for blood glucose control in diabetes. ISRN Pharmacol 2013;2013:484675. https://doi.org/10.1155/2013/484675
  • 2. Sheikh BA, Pari L, Rathinam A, Chandramohan R. Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie 2015;112:57-65. https://doi.org/10.1016/j.biochi.2015.02.008
  • 3. Dyson T. World food trends and prospects to 2025. Proc Natl Acad Sci U S A. 1999;96:5929-36. https://doi.org/10.1073/pnas.96.11.5929
  • 4. Zhu K, Kakehi T, Matsumoto M, Iwata K, Ibi M, Ohshima Y, et al. NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radic Biol Med 2015;83:21-30. https://doi.org/10.1016/j.freeradbiomed.2015.02.009
  • 5. Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015;27:1276-85. https://doi.org/10.1016/j.cellsig.2015.03.007
  • 6. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 2018;117:662-75. https://doi.org/10.1016/j.jfma.2018.02.007
  • 7. Yakush Williams JK. Management strategies for patients with diabetic kidney disease and chronic kidney disease in diabetes. Nurs Clin North Am 2017;52:575-87. https://doi.org/10.1016/j.cnur.2017.07.007
  • 8. Clifton SJ, Ward LK, Ranner DS. The status of juniper Juniperus communis L. in North-East England. Biol Conserv 1997;79:67-77. https://doi.org/10.1016/S0006-3207(96)00101-2
  • 9. Bais S, Gill NS, Rana N, Shandil S. A phytopharmacological review on a medicinal plant: Juniperus communis. Int Sch Res Notices 2014;2014:634723. https://doi.org/10.1155/2014/634723
  • 10. Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, et al. Chemical composition and antioxidant properties of Juniper Berry (Juniperus communis L.) essential oil. action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants (Basel) 2014;3:81-98. https://doi.org/10.3390/antiox3010081
  • 11. Tavares WR, Seca AML. The current status of the pharmaceutical potential of Juniperus L. metabolites. Medicines (Basel) 2018;5:81. https://doi.org/10.3390/medicines5030081
  • 12. Orhan N, Hoçbaç S, Orhan DD, Asian M, Ergun F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran J Basic Med Sci 2014;17:426-32. http://dx.doi.org/10.22038/ijbms.2014.2927
  • 13. Yagi K. Simple procedure for specific enzyme of lipid hydroperoxides in serum or plasma. Methods Mol Biol 1998; 108: 107-110. https://doi.org/10.1385/0-89603-472-0:107
  • 14. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5: 62-71. https://doi.org/10.1006/niox.2000.0319
  • 15. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61: 882-888.
  • 16. Sun Y, Oberley LW, Ying L. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497-500.
  • 17. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • 18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1961; 193: 265-275.
  • 19. Misra A, Sattar N, Tandon N, Shrivastava U, Vikram NK, Khunti K, et al. Clinical management of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol 2018;6:979-91. https://doi.org/10.1016/S2213-8587(18)30199-2
  • 20. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225-32. https://doi.org/10.1046/j.1523-1755.2003.00712.x
  • 21. Akdogan M, Koyu A, Ciris M, Yildiz K. Anti-hypercholesterolemic activity of J. communis oil in rats: a biochemical and histopathological investigation. BioMed Res 2012;23:321-8.
  • 22. Jones SM, Zhong Z, Enomoto N, Schemmer P, Thurman RG. Dietary juniper berry oil minimizes hepatic reperfusion injury in the rat. Hepatology 1998;28:1042-50. https://doi.org/10.1002/hep.510280419
  • 23. Han X, Parker TL, Benavente C. Anti-inflammatory activity of Juniper (Juniperus communis) berry essential oil in human dermal fibroblasts. Cogent Medicine 2017;4:1-7. http://dx.doi.org/10.1080/2331205X.2017.1306200
  • 24. Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225-33. htps://doi.org/10.2337/diabetes.55.01.06.db05-0894
  • 25. Gupta V, Lahiri SS, Sultana S, Kumar R. Mechanism of action of Rhodiola imbricata Edgew during exposure to cold, hypoxia and restraint (C-H-R) stress induced hypothermia and post stress recovery in rats. Food Chem Toxicol 2009;47:1239-45. https://doi.org/10.1016/j.fct.2009.02.017
  • 26. Buldanlioglu S, Turkmen S, Ayabakan HB, Yenice N, Vardar M, Dogan S. Nitric oxide, lipid peroxidation and antioxidant defence system in patients with active or inactive Behçet's disease. Br J Dermatol 2005;153:526-30. https://doi.org/10.1111/j.1365-2133.2005.06543.x
  • 27. Di Marco E, Jha JC, Sharma A, Wilkinson-Berka JL, Jandeleit-Dahm KA, de Haan JB. Are reactive oxygen species still the basis for diabetic complications? Clin Sci (Lond) 2015;129:199-216. https://doi.org/10.1042/CS20150093
  • 28. Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol 2015;28:257-68. https://doi.org/10.1007/s40620-014-0136-2