Toz Metalurjik Cu-Ti Malzemelerin Sinterlenmesi ve Karakterizasyonu

Farklı oranlarda titanyum içeren toz metalurjik malzemeler sıcak presleme yöntemiyle sinterlenerek üretilmiştir. Üretilen malzemelerin yoğunlukları, mikroyapısal özellikleri, sertlikleri ve aşınma dayanımları incelenmiştir. Ayrıca aşınma mekanizmasının belirlenebilmesi için aşınma testi sonrası malzemelerin aşınmış yüzeyleri tarama elektron mikroskobu kullanılarak incelenmiştir. Yapılan incelemeler sonucunda titanyum partikülleri etrafında farklı katmanlardan oluşan intermetalik fazlar oluştuğu belirlenmiştir. Oluşan intermetaliklerin malzemenin sertliğini ve aşınma dayanımını arttırdığı tespit edilmiştir. Ayrıca aşınmış yüzeylerde yapılan incelemeler malzemenin sertliğinin değişmesiyle birlikte aşınma mekanizmasınında değiştiğini ortaya koymuştur

Sintering and Characterization of Powder Metallurgic Cu-Ti Alloys

Copper samples with different titanium contents were produced using hot pressing technique. Densities, microstructures, hardness and wear resistances of the produced specimens were investigated. Also to understand the operating wear mechanisms during wear tests worn surfaces of the speciemens were investigated under scanning electron microscope. Microstructural investigations showed that different intermetallic layers were formed around titanium particles. Formation of these intermetallic phases increased hardness and wear resistance of the material. Worn surface investigations showed that change of hardness also changes the wear mechanisms that cause wear damage during wear tests

___

  • [1] Ranjbar Motlagh, S.; Maghsoudi, M.H.; Serajzadeh, S. Softening behaviour of alumina reinforced copper processed by equal channel angular pressing. Mater Sci Tech Ser. 2014; 30, 220- 226.
  • [2] Song, K.; Guo, X.; Liang, S.; Zhao, P.; Zhang, Y. Relationship between interfacial stress and thermal expansion coefficient of copper-matrix composites with different reinforced phases. Mater Sci Tech Ser. 2014; 30, 171-175 .
  • [3] Han, S.Z.; Goto, M.; Ahn, J.H.; Lim, S.H.; Kim S.; Lee, J. Grain growth in ultrafine grain sized copper during cyclic deformation. J Alloy Compd. 2014; 615, S587-589.
  • [4] Chandrasekhar S.B., Wasekar N.P., Ramakrishna M., Babu P.S., Rao T.N., Kashyap B.P.; Dynamic strain ageing in fine grained Cu-1wt%Al2O3 composite processed by two step ball milling and spark plasma sintering. J Alloy Compd. 2016; 656, 423-430.
  • [5] Semboshi, S.; Orimo, S.; Suda, H.; Gao, W.; Sugawara, A.; Aging of copper-titanium dilute alloys in hydrogen atmosphere: Influence of priordeformation on strength and electrical conductivity. Mater Trans. 2011; 21, 1-6.
  • [6] Semboshi, S.; Sato, S.; Ishikuro, M.; Wagatsuma, K.; Iwase, A.; Takasugi, T. Investigation of precipitation behaviour in age-hardenable Cu-Ti alloys by an extraction-based approach. Metall Mater Trans A. 2014; 45, 3401-3411.
  • [7] Naboychenko, S.S.; Murashova, I.B. Production of copper and copper alloy powders. In Handbook of Non-Ferrous Metal Powders Technologies and Applications; O.D. Neikov, S. S. Naboychenko, G. Dowson, Eds; Elsevier: Oxford, 2009; 331-368.
  • [8] Hao, H.; Mo, W.; Lv, Y.; Ye, S.; Gu, R.; Wu, P. The effect of trace amount of Ti and W on the powder metallurgy process of Cu. J Alloy Compd. 2016; 660, 204-207.
  • [9] Dash, K.; Ray, B.C.; Chaira, D. Synthesis and characterization of copper-alumina metal matrix composite by conventional and spark plasma sintering, J Alloy Compd. 2012; 516, 78-84.
  • [10] Nagarjuna, S.; Sarma, D.S. Effect of cobalt addition on the age hardening of Cu-4.5Ti alloy. J Mater Sci. 2002; 37, 1929-1940.
  • [11] Soffa, W.A.; Laughlin, D.E. High-strength age hardening copper-titanium alloys: redivivus. Prog Mater Sci. 2004; 49, 347-366.
  • [12] Nagarjuna, S.; Srinivas, M. High temperature tensile behaviour of a Cu-1.5 wt.% Ti alloy. Mat Sci Eng A-Struct. 2002; 335, 89-93.
  • [13] Nagarjuna, S.; Balasubramanian, K.; Sarma, D.S. Effect of Ti additions on the electrical resistivity of copper. Mat Sci Eng A-Struct. 1997; 225, 118-124.
  • [14] Sobhani, M.; Mirhabibi, A.; Arabi, H.; Brydson, R.M.D. Effects of in situ formation of TiB2 particles on age hardening behavior of Cu-1 wt% Ti- 1wt%TiB2. Mat Sci Eng A-Struct. 2013; 577, 16-22.
  • [15] Nagarjuna, S.; Balasubramanian, K. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. J Mater Sci. 1999; 34, 2929-2942.
  • [16] Wang, F.; Li, Y.; Wakoh, K.; Koizumi, Y.; Chiba, A. Cu-Ti-C alloy with high strength and high electrical conductivity prepared by two-step ballmilling process. Mater Design. 2014; 61, 70-74.
  • [17] Ruzic, J.; Stasic, J.; Rajkovic, V.; Bozic, D. Strengthening effect in precipitation and dispersion hardened powder metallurgy copper alloys. Mater Design. 2013; 49, 746-754.
  • [18] Yamanoglu, R.; Karakulak, E.; Zeren, M.; Koç, F.G. Effect of nickel on microstructure and wear behaviour of pure aluminium against steel and alumina counterfaces. Int J Cast Metal Res. 2013; 26, 289-295.