Sustainable Approach to Produce Polyurethane Composite Foams with Natural Materials

Sustainable Approach to Produce Polyurethane Composite Foams with Natural Materials

Due to the rapid increase in population growth, energy and synthetic material consumption, the materials which reduce energy consumption like isolation structures have been gaining an importance after results of many innovative researches. So far, the most part of energy reducing materials have been produced by synthetic chemicals and therefore have a detrimental effect on the natural world and living organisms. Rigid polyurethane foam (PUF) is mainly manufactured by synthetic raw materials and widely used as an isolation material for different applications. Here, we present a novel composite PUFs contain different amount of natural materials as fiberglass, straw and basalt fibers between 0.5% and 2% by weight. Thermal conductivity is varied from 0.02109 to 0.02260 W/(m.K) by using 1% and 2% for fiberglass and straw, respectively. Furthermore, there is no significant change for the compression strengths of the resulted composites when compare with virgin PUF except 2% fiberglass which demonstrates about 70 kPa performance. We strongly believe that lowering synthetic raw materials content for PUF by incorporating natural materials will have a proportionately less harmful impact on the ecology and natural sustainability while keep similar thermal and physical properties to those of the current 100% synthetic PUFs

___

  • 1. Sharmin, E., Zafar, F. Polyurethane: An Introduction; INTECH Open Access Publisher, 2012; 3 pp.
  • 2. Oertel, G. Polyurethane Handbook, 2nd ed.; Hanser: New York, 1994.
  • 3. Ashida, K. Polyurethane and Related Foams Chemistry and Technology; Florida: Taylor & Francis Group, 2007; 8 pp.
  • 4. Szycher, M. Handbook of Polyurethanes; Woburn, MA: CardioTech International Inc., 1999; 48 pp.
  • 5. Demharter, A. Polyurethane Rigid Foam, a Proven Thermal Insulating Material for Applications Between +130 OC and −196 OC. Cryogenics. 1998; 38(1), 113-117.
  • 6. Jin, Y.; Ruan, X.; Cheng, X.; Lü, Q. Liquefaction of Lignin by Polyethylene Glycol and Glycerol. Bioresource Technology, 2011; 102, 3581–3583.
  • 7. Gu, R.; Sain, M.M. Effects of Wood Fiber and Microclay on the Performance of Soy Based Polyurethane Foams. Journal of Polymers Environmenty, 2013; 21(1), 30–38.
  • 8. Kwon, O.; Yang, S.; Kim, D.; Park, J. Characterization of Polyurethane Foam Prepared by Using Starch as Polyol. Journal of Applied Polymer Science, 2006; 103, 1544–1553.
  • 9. David, J.; Vojtová, L.; Bednarík, K.; Kucerik, J.; Vávrová, M.; Jancár, J. Development of Novel Environmental Friendly Polyurethane Foams. Environmental Chemistry Letters, 2009; 8(4), 381–385.
  • 10. Tanaka, R.; Hirose, S.; Hatakeyama, H. Preparation and Characterization of Polyurethane Foams Using a Palm Oil-Based Polyol. Bioresource Technology 2008; 99, 3810–3816.
  • 11. Büyükakinci, B.Y.; Sökmen, N.; Kucuk, H. Thermal Conductivity and Acoustic Properties of Natural Fiber Mixed Polyurethane Composites. Research Journal of Textile and Apparel, 2011; 21(2), 124-132.
  • 12. Beltrán, A. A.; Boyacá, L. A. Production of Rigid Polyurethane Foams from Soy-Based Polyols. Latin American Applied Research, 2011; 41(1), 75-80.
  • 13. Silva, M.C.; Takahashi, J.A.; Chaussy, D.; Belgacem, M.N.; Silva, G.G. Composites of Rigid Polyurethane Foam and Cellulose Fiber Residue. Journal of Applied Polymer Science, 2010; 117(6), 3665- 3672.
  • 14. Kim, S.H.; Park, H.C.; Jeong, H.M.; Kim, B.K. Glass Fiber Reinforced Rigid Polyurethane Foams. Journal of Materials Research, 2010; 45(10), 2675-2680.
  • 15. Pielichowski, K.; Kulesza, K.; Pearce, E.M. Thermal Degradation Studies on Rigid Polyurethane Foams Blown with Pentane. Journal of Applied Polymer Science, 2003; 88(9), 2319-2330. Celal Bayar University Journal of Science Volume 13, Issue 4, p 887-892 H. Avcı 892
  • 16. Seo, W.J.; Jung, H.C.; Hyun, J.C.; Kim, W.N.; Lee, Y.B.; Choe, K.H.; Kim, S.B. Mechanical, Morphological, And Thermal Properties of Rigid Polyurethane Foams Blown by Distilled Water. Journal of Applied Polymer Science, 90(1), 12-21.
  • 17. Ting; Y.; Zhenjin, C.; Jiahui, Y.; Yuqiu, Y.; Hiroyuki, H. Polyurethane Surface Treatment on Two Kinds of Basalt Fiber Composite and Mechanical Properties Comparison. Online available at (February 20, 2017): http://www.temp.speautomotive.com/SPEA_CD/SPEA2014/pdf/RF/RF6.pdf
  • 18. Li, Y.; Arthur, J. R. Cellulose Nano Whiskers as a Reinforcing Filler in Polyurethanes. Algae. 2011; 75(80), 10-15.
  • 19. Bolshakova, N. V.; Kostenok, O. M. Thermal Conductivity of Basalt Fiber Materials. Refractories. 1995; 36(10), 331-332.
  • 20. Singha K. A Short Review on Basalt Fiber. International Journal of Textile Science, 2012; 1(4), 19-28.
  • 21. Costes, J.P.; Evrard, A.; Biot, B.; Keutgen, G.; Daras, A., Dubois, S.; Lebeau, F.; Courard, L. Thermal Conductivity of Straw Bales: Full Size Measurements Considering the Direction of the Heat Flow. Buildings, 2017; 7(11), 1-15.
  • 22. ASTM C177 – 13. Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. Online available at (February 20, 2017): https://www.astm.org/Standards/C177.htm
  • 23. ASTM D1621 – 16. Standard Test Method for Compressive Properties of Rigid Cellular Plastics. Online available at (February 20, 2017): http://www.astm.org/Standards/D1621
  • 24. Gama, N. V.; Soares, B.; Freire, C. S.; Silva, R.; Neto, C. P.; BarrosTimmons, A.; Ferreira, A. Bio-based Polyurethane Foams Toward Applications Beyond Thermal Insulation. Materials & Design, 2015; 76, 77-85.
  • 25. Mosiewicki, M. A.; Dell'Arciprete, G. A.; Aranguren, M. I.; Marcovich, N. E. Polyurethane Foams Obtained from Castor Oil-Based Polyol and Filled with Wood Flour. Journal of Composite Materials, 2009; 43(25), 3057-3072.
  • 26. Antunes, M.; Cano, Á.; Realinho, V.; Arencón, D.; Velasco, J. I. Compression Properties and Cellular Structure of Polyurethane Composite Foams Combining Nanoclay and Different Reinforcements. International Journal of Composite Materials, 2014; 4(5A), 27-34.
  • 27. Patel, P. S.; Shepherd, D. E.; Hukins, D. W. Compressive Properties of Commercially Available Polyurethane Foams as Mechanical Models for Osteoporotic Human Cancellous Bone. BMC Musculoskeletal Disorders, 2008; 9(1), 137-144.
  • 28. Avci, H.; Monticello, R.; Kotek, R. Preparation of Antibacterial PVA and PEO Nanofibers Containing Lawsonia Inermis (Henna) Leaf Extracts. Journal of Biomaterials Science, Polymer Edition, 2013; 24(16), 1815-1830.
  • 29. Avci, H.; Kotek, R.; Yoon, J. Developing an Ecologically Friendly Isothermal Bath to Obtain a New Class High-Tenacity and High-Modulus Polypropylene Fibers. Journal of Materials Science, 2013; 48(22), 7791-7804.
  • 30. Keene, B.; Bourham, M.; Viswanath, V.; Avci, H.; Kotek, R. Characterization of degradation of polypropylene nonwovens irradiated by γ-ray. Journal of Applied Polymer Science, 2014; 131(4), 39917 (1- 10).
  • 31. Avci, H.; Ghorbanpoor, H.; Topcu, I.B.; Nurbas, M. Investigation and Recycling of Paint Sludge with Cement and Lime for Producing Lightweight Construction Mortar. Journal of Environmental Chemical Engineering, 2017; 5(1), 861-869.