Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline

Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline

This work deals with the spectroscopic properties (FT-IR, FT-Raman and NMR), structural and some electronic properties as well as theoretical calculations of 4-amino-2-methyl-8-(trifluoromethyl) quinoline (AMTQ) molecule. The vibrational, structural and some electronic properties observations of the AMTQ were reported, which is investigated using some spectral methods and DFT calculations. FT-IR and FT-Raman spectra were obtained for AMTQ at room temperature in the region 4000 cm-1- 400 cm-1 and 3500-50 cm-1, respectively. In the DFT calculations, the B3LYP functional with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets was applied to carry out the quantum mechanical calculations of the spectroscopic, structural and some electronic properties of AMTQ. FT-IR and FT-Raman spectra were interpreted with the by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the AMTQ by means of the theoretical and experimental methods

___

  • 1. Quinoline, Wikipedia, https://en.wikipedia.org/wiki/Quinoline, 2017, (accessed 20.05.2017).
  • 2. Wang, L.Y., Chen, Q.W., Zhai, G.H., Wen, Z.Y., Zhang, Z.X., Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus, Dyes and Pigmentes, 2007, 72, 357–362.
  • 3. Dahule, H.K., Thejokalyani, N., Dhoble, S.J., Novel Br-DPQ blue light-emitting phosphors for OLED, Luminescence, 2014, 4, 405– 410.
  • 4. Ciobotaru, I.C., Polosan, S., Ciobotaru, C.C., Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis, Journal of Luminescence, 2014, 145, 259–262.
  • 5. Camargo, H, Paolini, T.B., Niyama, E, Brito, H.F., Cremona, M, New rare-earth quinolinate complexes for organic light-emitting devices, Thin Solid Films, 2013, 528, 36–41
  • 6. Dereli, O, Erdogdu, Y, Gulluoglu, M.T., Ozmen, A, Sundaraganesan, N, Vibrational spectral and quantum chemical investigations of tert-butyl-hydroquinone, Journal of Molecular Structure, 2012, 1012, 168-176.
  • 7. Dereli, O, Sudha, S, Sundaraganesan, N, Molecular structure and vibrational spectra of 4-phenylsemicarbazide by density functional method, Journal of Molecular Structure, 2011, 994, 379-386.
  • 8. Yurdakul, Ş, Badoglu, S, An FT-IR and DFT study of the free and solvated 4-(imidazol-1-yl)phenol, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 614-622.
  • 9. Yurdakul, Ş, Badoglu, S, Ozkurt, L, An experimental and theoretical investigation of free Oxazole in conjunction with the DFT analysis of Oxazole (H2O)ncomplexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 162, 48- 60.
  • 10. Erdogdu, Y, Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of Esculetin molecule, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 106, 25-33.
  • 11. Erdogdu, Y, Unsalan, O, Gulluoglu, M.T., FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6, 8- dibromoflavone, Journal of Raman Spectroscopy, 2010, 41, 820- 828.
  • 12. Subashchandrabose, S, Saleem, H, Erdogdu, Y, Dereli, Ö, Thanikachalam, V, Jayabharathi, J, Structural, vibrational and hyperpolarizability calculation of (E)-2-(2- hydroxybenzylideneamino)-3-methylbutanoic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 231-241.
  • 13. Sajan, D, Erdogdu, Y, Kuruvilla, T, Hubert Joe, I, Vibrational spectra and first-order molecular hyperpolarizabilities of phydroxybenzaldehyde dimer, Journal of Molecular Structure, 2010, 983,12-21.
  • 14. Erdogdu, Y, Unsalan, O, Sajan, D, Gulluoglu, M.T., Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 130- 136.
  • 15. Erdoğdu, Y, Güllüoğlu, M.T., Yurdakul, Ş, Molecular structure and vibrational spectra of 1,3-bis(4-piperidyl)propane by quantum chemical calculations, Journal of Molecular Structure, 2008, 889, 361-370.
  • 16. Frosch, T, Schmitt, M, Popp, J, Raman spectroscopic investigation of the antimalarial agent mefloquine, Analytical and Bioanalytical Chemistry, 2007, 387, 1749–1757.
  • 17. Frosch, T, Popp, J, Structural analysis of the antimalarial drug halofantrine by means of Raman spectrocopy and density functional theory calculations, Journal of Biomedical Optics, 2010, 15 (4), 041516. doi:10.1117/1.3432656
  • 18. Frosch, T, Schmitt, M, Schenzel, K, Faber, J.H., Bringmann, G, Kiefer, W, Popp, J, In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations, Biopolymers, 2006, 82, 295–300.
  • 19. Frosch, T, Küstner, B, Schlücker, S, Szeghalmi, A, Schmitt, M, Kiefer, W, Popp, J, Invitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine, Journal of Raman Spectroscopy, 2004, 35, 819–821.
  • 20. Ulahannan, R.T., Panicker, C.Y., Varghese, H.T., Van Alsenoy, C, Musiol, R, Jampilek, J, Anto, P.L, Spectroscopic (FT-IR, FTRaman) investigations and quantum chemical calculations of 4- hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 404–414.
  • 21. Frosch, T, Popp, J, Relationship between molecular structure and Raman spectra of quinolones, Journal of Molecular Structure, 2009, 924–926, 301–308.
  • 22. Cînta-Pînzaru, S, Peica, N, Küstner, B, Schlücker, S, Schmitt, M, Frosch, T, Faber, J.H., Bringmann, G, Popp, J, FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin, Journal of Raman Spectroscopy, 2006, 37, 326–334.
  • 23. Frosch, T, Schmitt, M, Bringmann, G, Kiefer, W, Popp, J, Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions, Journal of Physical Chemistry B, 2007, 111, 1815–1822.
  • 24. Frosch, T, Schmitt, M, Popp, J, In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark, Journal of Physical Chemistry B, 2007, 111, 4171– 4177.
  • 25. Fazal, E, Jasinski, J, Anderson, B, Kaur, M, Nagarajan, S, Sudha, B, Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2- Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic Derivatives, Crystals, 2015, 5, 100- 115.
  • 26. Diwaker, C.S., Chidan, Kumar, A, Chandraju, Kumar, S, Spectroscopic (FT-IR, 1H, 13C NMR and UV–vis) characterization and DFT studies of novel 8-((4-(methylthio)-2,5-diphenylfuran, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 602–613.
  • 27. Ulahannan, R.T., Panicker, C.Y., Varghese, H.T., Musiol, R., Jampilek, J., Alsenoy, C.V., War, J.A., Manojkumar T.K., Vibrational spectroscopic studies and molecular docking study of 2-[(E)-2-phenylethenyl]quinoline-5-carboxylic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 190–199.
  • 28. Kulkarni, A, King, C, Butcher, R.J., Fortunak, M.D., 4,7-Dichloroquinolone, Acta Crystallographica, 2012, E68, 1498.
  • 29. Pereira, G.R., et al., 7-Chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies, European Journal of Medicinal Chemistry, 2014, 73, 295–309.
  • 30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al., Gaussian 09, revision A.2. Wallingford CT: Gaussian, Inc., 2009.
  • 31. Pulay, P., Baker, J., Wolinski, K, Green Acres Road Suite A Fayettevile, Arkansas, 72703, USA, 2013.
  • 32. Thanikachalam, V, Periyanayagasamy, V, Jayabharathi, J, Manikandan, G, Saleem, H, Subashchandrabose, S, Erdogdu, Y, FT-Raman, FT-IR spectral and DFT studies on (E)-1-4- nitrobenzylidenethiocarbonohydrazide, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 87, 86-95.
  • 33. Roeges, N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.
  • 34. Güllüoğlu, M.T., Erdogdu, Y, Yurdakul, Ş, Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree–Fock calculations, Journal of Molecular Structure, 2007, 834, 540-547.
  • 35. Erdogdu, Y, Güllüoğlu, M.T., Analysis of vibrational spectra of 2 and 3-methylpiperidine based on density functional theory calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 162-167.
  • 36. CCCBDB listing of precalculated vibrational scaling factors NIST, http://srdata.nist.gov/cccbdb/vibscalejust.asp, 2017 (accessed 20.05.2017).
  • 37. Ditchfield, J. R., Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, Journal of Chemical Physics, 1972, 56, 5688
  • 38. Wolinski, K, Hinton,J.F., Pulay, P, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, Journal of American Chemical Society, 1990, 112 (23), 8251-8260.
  • 39. Azizi, N, Rostami, A.A., Godarzian, A, 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software, Journal of Physical Society of Japan, 2005, 74, 1609-1620.
  • 40. Rohlfing, M, Leland, C, Allen, C, Ditchfield, R, Proton and carbon13 chemical shifts: Comparison between theory and experiment, Chemical Physics, 1984, 87, 9-15.
  • 41. Chesnut, D, Phung, C, Nuclear magnetic resonance chemical shifts using optimized geometries, Journal of Chemical Physics 1989; 91, 6238 – 6245