Histological and Histochemical Study on Stomach of Salamandra infraimmaculata (Amphibia: Urodela)

Histological and Histochemical Study on Stomach of Salamandra infraimmaculata (Amphibia: Urodela)

In the current study, we aimed to investigate the histological and histochemical characteristics of stomach of Salamandra infraimmaculata. The stomach of S. infraimmaculata was composed of four distinct layers; mucosa, submucosa, muscularis externa and serosa. The inner surface of gastric mucosa was lined by surface mucous cells which were simple columnar epithelium. Gastric glands were observed in mucosa. Mucous neck cells were located at the upper portion of glands, besides oxynticopeptic cells which were predominant at the gland body. The secretory components of mucous cells were neutral and acidic glycoproteins. The mucosa was separated from muscularis externa through submucosa which was formed by loose connective tissue. Muscularis externa consisted of a thick layer of smooth muscle. The muscularis externa was surrounded by the serosa which was the outermost layer of digestive tract.

___

  • 34. Liquori, G.E.; Zizza, S.; Mastrodonato, M.; Scillitani, G.; Calamita, G.; Ferri, D. Pepsinogen and H, K-ATPase mediate acid secretion in gastric glands of Triturus carnifex (Amphibia, Caudata). Acta Histochemica, 2005, 107(2), 133-141.
  • 33. Ruiz, M.C.; Abad, M.J.; González, B.; Acosta, A., Michelangeli, F. Comparison of acid and pepsinogen secretion control by oxyntopeptic cell of amphibians. Acta Científica Venezolana, 1993, 44(2), 89-94.
  • 32. Bani, G.; Formigli, L.; Cecchi, R. Morphological observations on the glands of the oesophagus and stomach of adult Rana esculenta and Bombina variegata. Italian Journal of Anatomy and Embryology, 1992, 97(2), 75-87.
  • 31. Suganuma, T.; Katsuyama, T.; Tsukahara, M.; Tatematsu, M.; Sakakura, Y.; Murata, F. Comparative histochemical study of alimentary tracts with special reference to the mucous neck cells of the stomach. Developmental Dynamics, 1981, 161(2), 219-238.
  • 30. Díaz, A.O.; García, A.M.; Goldemberg, A.L. Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: a histochemical study. Acta Histochemica, 2008, 110(1), 76-85.
  • 29. Leknes, I.L. Histochemical studies on mucin-rich cells in the digestive tract of a teleost, the Buenos Aires tetra (Hyphessobrycon anisitsi). Acta Histochemica, 2011; 113(3), 353-357.
  • 28. Gupta, B.L. The relationship of mucoid substances and ion and water transport, with new data on intestinal goblet cells and a model for gastric secretion. In Symposia of the Society for Experimental Biology, 1989, 43, 81.
  • 27. Neutra, M.; Forstner, J. Gastrointestinal mucus: synthesis, secretion, and function. In: Johnson L, editor. Physiology of the gastrointestinal tract, 2nd edn. New York, NY: Raven Press, 1987.
  • 26. Allen A. Structure and function of gastrointestinal mucus. In Johnson L, editor. Physiology of the gastroenterology tract, 1 st edn. New York, NY: Raven Press, 1981, 617-639.
  • 25. Machado-Santos, C.; Pelli-Martins, A.A.; Abidu-Figueiredo, M.; de Brito-Gitirana, L. Histochemical and immunohistochemical analysis of the stomach of Rhinella icterica (Anura, Bufonidae). Journal of Histology, 2014, Artical ID 872795, 1-8.
  • 24. Liquori, G.E.; Mastrodonato, M.; Zizza, S.; Ferri, D. Glycoconjugate histochemistry of the digestive tract of Triturus carnifex (Amphibia, Caudata). Journal of Molecular Histology, 2007, 38(3), 191-199.
  • 23. Ferri, D.; Liquori, G.E.; Natale, L.; Santarelli, G.; Scillitani, G. Mucin histochemistry of the digestive tract of the red-legged frog Rana aurora aurora. Acta Histochemica, 2001, 103(2), 225-237.
  • 22. Rovira, J.; Villaro, A.C.; Bodegas, M.E.; Valverde, E.; Sesma, P. Structural study of the frog Rana temporaria larval stomach. Tissue and Cell, 1993, 25(5), 695-707.
  • 21. Scillitani, G.; Mentino, D.; Liquori, G.E.; Ferri, D. Histochemical characterization of the mucins of the alimentary tract of the grass snake, Natrix natrix (Colubridae). Tissue and Cell, 2012, 44(5), 288- 295.
  • 20. Smith, D.M.; Grasty, R.C.; Theodosiou, N.A.; Tabin, C.J.; Nascone‐Yoder, N.M. Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evolution & Development, 2000, 2(6), 348-359.
  • 19. Hamdi, H.; El-Ghareeb, A.W.; Zaher, M.; AbuAmod, F. Anatomical, histological and histochemical adaptations of the avian alimentary canal to their food habits: II-Elanus caeruleus. International Journal of Engineering Science, 2013, 4(10), 1355-1364.
  • 18. Hariri, L.P.; Tumlinson, A.R.; Wade, N.H.; Besselsen, D.G.; Utzinger, U.; Gerner, E.W.; Barton, J.K. Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract. Comparative Medicine, 2007, 57(2), 175-185.
  • 17. Crespo, S.; Carrassón, M.; Dopazo, L. R.; Grau, A. A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex (Pisces, Sparidae). Histology and Histopathology, 2006, 21, 579-593.
  • 16. AmphibiaWeb. Information on amphibian biology and conservation [web application]. AmphibiaWeb, Berkeley, CA, USA. Accessed on: 21.04.17. Available from: http://amphibiaweb.org/
  • 15. Budak, A.; Göçmen, B. Herpetoloji (Ders Kitabı). İkinci baskı. Ege Üniversitesi Yayınları. Fen Fakültesi Yayın, (194), 2008.
  • 14. Langone, J.A.; Camargo, A.; de Sá, R.O. High genetic diversity but low population structure in the frog Pseudopaludicola falcipes (Hensel, 1867) (Amphibia, Anura) from the Pampas of South America. Molecular Phylogenetics and Evolution, 2016, 95, 137- 151.
  • 13. Amin, N.M.; Womble, M.; Ledon-Rettig, C.; Hull, M.; Dickinson, A; Nascone-Yoder, N. Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology. Developmental Biology, 2015, 405, 291-303.
  • 12. Pittman, S.E.; Osbourn, M.S.; Semlitsch, R.D. Movement ecology of amphibians: a missing component for understanding population declines. Biological Conservation, 2014, 169, 44-53.
  • 11. Hayes, T.B.; Case, P.; Chui, S.; Chung, D.; Haeffele C.; Haston, K.; Lee, M.; Mai, V.P.; Marjuoa, Y.; Parker, J.; Tsui M. Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environmental Health Perspectives, 2006, 114, 40-50.
  • 10. Lutz, I., Blodt, S., Kloas, W. Regulation of estrogen receptors in primary cultured hepatocytes of the amphibian Xenopus laevis as estrogenic biomarker and its application in environmental monitoring. Comparative Biochemistry and Physiology C, 2005, 141, 384-392.
  • 9. Feder, M.E.; Burggren, W.W. Environmental physiology of the amphibians, University of Chicago Press, Chicago, 1992, pp 1-6.
  • 8. Cole, C.R.; Smith, C.A. Glycoprotein biochemistry (structure and function)—a vehicle for teaching many aspects of biochemistry and molecular biology. Biochemical Education, 1989, 17(4), 179-189.
  • 7. Lillehoj, E.P.; Kim, K.C. Airway mucus: its components and function. Archives of Pharmacal Research, 2002, 25(6), 770-780.
  • 6. Akat, E.; Arıkan, H.; Göçmen, B. Histochemical and biometric study of the gastrointestinal system of Hyla orientalis (Bedriaga, 1890) (Anura, Hylidae). European Journal of Histochemistry, 2014, 58(4), 291-295.
  • 5. Akat, E.; Arıkan, H. Morphology and biometric study of skin of Hyla orientalis Bedriaga, 1890 (Anura, Hylidae). Russian Journal of Herpetology, 2013, 20(4), 253-258.
  • 4. Cone, R.A. Barrier properties of mucus. Advanced Drug Delivery Reviews, 2009, 61(2), 75-85.
  • 3. Kunz, G.; Beil, D.; Deininger, H.; Wildt, L.; Leyendecker, G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Human Reproduction, 1996, 11(3), 627-632.
  • 2. Junqueira, L.C.; Carneiro, J. (Çeviri: Y. Aytekin, S. Solakoğlu). Temel Histoloji. İstanbul: Nobel matbaacılık, 2006, pp 291-307.
  • 1. Stevens, C.E.; Hume, I.D. Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge, 2004.