Development of Embryonic Chick Liver and Distribution of eNOS, iNOS, Laminin α1

Development of Embryonic Chick Liver and Distribution of eNOS, iNOS, Laminin α1

At the embryonic development, signal transduction pathways, genetic factors, involvements between nucleus and cytoplasm, environmental factors, cell-cell and cell-matrix interactions have important roles. It has been known that the cells are regulating the Extracellular Matrix (ECM) synthesis, degradation and reshaping events, also it has been known that the Nitric Oxide is an important molecule for cellular communication and have effects on ECM molecule distribution by reacting with ECM molecules. In this reason, the purpose of our study is detecting the correlation of reactive nitrogen species with a glycosylated molecule laminin α1. In this experiment, Leghorn type SPF (Specific Pathogen Free) embryonic chick eggs have been used. Embryos are collected at 5th, 6th and 7th days at incubation and taken into the 10% neutral buffered formalin solution. The liver tissues that dissected from embryos are fixated at second time. After 24 hours, it has been subjected to the routine paraffin embedding method and embedded to paraffin. From the 5µm sections, immunohistochemistry for eNOS, iNOS and Laminin α1 distribution, and for general histologic evaluation, Haematoxylene-Eosin stains has been applied. eNOS and iNOS immunoreactivity has been observed at peripheral zone of developing liver tissue that epithelialmesenchymal transition takes place. It has been determined that immunoreactivity was minimal in 5th day, increasing with the days progressed and have highest at 7th day. Also, eNOS staining has been more powerful than iNOS staining. Laminin immunoreactivity has been similar at all developmental stages, but relatively, has been showed lesser staining. Particularly, the presence at the zones of cell differentiation has been noteworthy

___

  • [1] Duarte, S.; Baber, J.; Fujii, T. Coito, A.J. Matrix Metalloproteinases in Liver Injury, Repair and Fibrosis, Matrix Biology, 2015; 44–46, 147-156.
  • [2] Langiewicz, M.; Schlegel, A.; Saponara, E.; Linecker, M.; Borger, P.; Graf, R.; Humar, B.; Clavien, P.A. Hedgehog Pathway Mediates Early Acceleration of Liver Regeneration Induced by a Novel Two-Staged Hepatectomy in Mice, Journal of Hepatology, 2017; 66(3): p. 560-570.
  • [3] Drews, U., Color Atlas of Embryology; Thieme, 1995; pp.383. [4] Gilbert, S.F., Developmental Biology; Sinauer Associates INC: Massachusetts, USA, 2012.
  • [5] Kitta, R.; Kuwamoto, M.; Yamahama, Y.; Mase, K.; Sawada, H. Nitric Oxide Synthase During Early Embryonic Development in Silkworm Bombyx mori: Gene Expression, Enzyme Activity, And Tissue Distribution. Development, Growth & Differentiation, 2016, 58(9), 750-756.
  • [6] Ribeiro, M.O.; Antunes, E.; de Nucci, G.; Lovisolo, S.M.; Zatz, R. Chronic Inhibition of Nitric Oxide Synthesis. A New Model of Arterial Hypertension, Hypertension, 1992; 20(3), 298-303.
  • [7] Bruckdorfer, R. The Basics About Nitric Oxide, Molecular Aspects of Medicine, 2005; 26(1-2), 3-31.
  • [8] Majid, D.S.; Kopkan, L. Nitric Oxide and Superoxide Interactions in the Kidney and Their Implication in The Development of Salt-Sensitive Hypertension. Clinical and Experimental Pharmacology & Physiology, 2007; 34(9), 946-52.
  • [9] Lepetsos, P.; Papavassiliou, A.G. ROS/Oxidative Stress Signaling in Osteoarthritis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2016; 1862(4), 576-591.
  • [10] Leadsham, J.E.; Gourlay, C.W. Cytoskeletal Induced Apoptosis in Yeast, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008; 1783(7), 1406-1412.
  • [11] Cheng, H.; Wang, L.; Mollica, M.; Re, A.T.; Wu, S.; Zuo, L. Nitric Oxide in Cancer Metastasis, Cancer Letters, 2014; 353(1), 1-7.
  • [12] Hsu, Y.-C.; Hsiao, M.; Chien, Y.W.; Lee W.-R., Exogenous Nitric Oxide Stimulated Collagen Type I Expression and TGF-β1 Production in Keloid Fibroblasts by a cGMP-Dependent Manner, Nitric Oxide, 2007; 16(2), 258-265.
  • [13] Brennan, P.A.; Palacios-Callender, M.; Umar, T.; Tant, S.; Langdon, J.D. Expression of Type 2 Nitric Oxide Synthase and P21 in Oral Squamous Cell Carcinoma, International Journal of Oral and Maxillofacial Surgery, 2002; 31(2), 200-205.
  • [14] Collu, F.; Gurcu, B. NO İnhibisyonunun Gelişen Piliç Embriyosu Karaciğer Dokusu Üzerine Etkisinin Histolojik, Histokimyasal ve İmmünohistokimyasal Açıdan İncelenmesi, in Biology, Manisa Celal Bayar Üniversitesi, 2016; p. 64. Tez
  • [15] Beqaj, S.; Jakkaraju, S.; Mattingly, R.R.; Pan, D.; Schuger, L. High RhoA Activity Maintains the Undifferentiated Mesenchymal Cell Phenotype, Whereas RhoA Down-Regulation by Laminin-2 Induces Smooth Muscle Myogenesis, The Journal of Cell Biology, 2002; 156(5), 893-903.
  • [16] Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease, Nature Reviews. Molecular Cell Biology, 2014; 15(12), 786-801.
  • [17] Gürcü, B. Balb/c Tipi Farelerde Metanefroz Gelişirken Farklılaşan Hücrelerin Işık-Elektron Mikroskobu ile Morfolojilerinin ve Glikozaminoglikanlarının Belirlenmesi, in Biology, Ege Üniversitesi, Bornova, 2002; p. 90. Tez
  • [18] Hohenester, E.; Yurchenco, P.D. Laminins in Basement Membrane Assembly, Cell Adhesion & Migration, 2013; 7(1), 56-63.
  • [19] Kelley, L.C.; Lohmer, L.L.; Hagedorn, E.J.; Sherwood, D.R. Traversing the Basement Membrane In Vivo: a Diversity of Strategies, The Journal of Cell Biology, 2014; 204(3), 291-302.
  • [20] Miner, J.H.; Li, C.; Mudd, J.L.; Go, G.; Sutherland, A.E. Compositional and Structural Requirements for Laminin and Basement Membranes During Mouse Embryo Implantation and Gastrulation, Development, 2004; 131(10), 2247-56.
  • [21] Aumailley, M.; Bruckner-Tuderman, L.; Carter, W.G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J.C.; Kleinman, H.K.; Marinkovich, M.P.; Martin, G.R.; Mayer, U.; Meneguzzi, G.; Miner, J.H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J.R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L.M.; Talts, J.F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U.M.; Yamada, Y.; Yurchenco, P.D. A Simplified Laminin Nomenclature, Matrix Biology, 2005; 24(5), 326-32.
  • [22] Miner, J.H. Laminins and Their Roles in Mammals, Microscopy Research and Technique, 2008; 71(5), 349-56.
  • [23] Albert, E.; The Extracellular Matrix in Development. In the Organization of the Early Vertebrate Embryo; Nikolas, Z., Editor; Plenum Press: New York, 1995; pp. 149-167.
  • [24] Rozario, T.; DeSimone, D.W. The Extracellular Matrix in Development and Morphogenesis: a Dynamic View, Developmental Biology, 2010; 341(1), 126-40.
  • [25] Brakebusch, C.; Fassler, R. The Integrin-Actin Connection, an Eternal Love Affair, the EMBO Journal, 2003; 22(10), 2324-33.
  • [26] Tkachenko, E.; Rhodes, J.M.; Simons, M. Syndecans: New Kids on The Signaling Block, Circulation Research, 2005; 96(5), 488-500.
  • [27] O'Sullivan, S.; Medina, C.; Ledwidge, M.; Radomski, M.W.; Gilmer, J.F. Nitric Oxide-Matrix Metaloproteinase-9 Interactions: Biological and Pharmacological Significance--NO and MMP-9 Interactions, Biochimica et Biophysica Acta, 2014; 1843(3), 603-17.
  • [28] Mikuz, G. Testicular Torsion: Simple Grading for Histological Evaluation of Tissue Damage, Applied Pathology, 1985; 3(3), 134-9.
  • [29] Nguyen, C.Q.; Hall, D.H.; Yang, Y.; Fitch, D.H. Morphogenesis of the Caenorhabditis elegans Male Tail Tip, Developmental Biology, 1999; 207(1), 86-106.
  • [30] Stadelmann, C.; Lassmann, H. Detection of Apoptosis in Tissue Sections, Cell Tissue Research, 2000; 301(1), 19-31.
  • [31] Vivek, C.; Veeraiah, K.; Padmavathi, P.; Rao, H.D.; Bramhachari, P.V. Acute Toxicity and Residue Analysis of Cartap Hydrochloride Pesticide: Toxicological Implications on the Fingerlings of Fresh Water Fish Labeo rohita, Biocatalysis and Agricultural Biotechnology, 2016; 7: pp.193-201.
  • [32] Dhage, P.A.; Kamble, L.K.; Bhargava, S.Y. Localization and Distribution of Superoxide Dismutase- 1 in the Neural Tube Morphogenesis of Chick Embryo, International Journal of Developmental Neuroscience, 2017; 56: p. 1-9.
  • [33] Tatsumi, N.; Miki, R.; Katsu, K.; Yokouchi, Y. Neurturin-GFRα2 Signaling Controls Liver Bud Migration Along the Ductus Venosus in the Chick Embryo, Developmental Biology, 2007; 307(1): pp.14-28.
  • [34] Nakayama, M.; Matsumoto, K.; Tatsumi, N.; Yanai, M.; Yokouchi, Y. Id3 is Important for Proliferation and Differentiation of the Hepatoblasts During the Chick Liver Development, Mechanisms of Development, 2006; 123(7): p. 580-90.
  • [35] Suksaweang, S.; Lin, C.-M.; Jiang, T.-X.; Hughes, M.W.; Widelitz, R.B.; Chuong, C.-M. Morphogenesis of Chicken Liver: Identification of Localized Growth Zones and the Role of β-catenin/Wnt in Size Regulation, Developmental Biology, 2004; 266(1): pp.109-122.
  • [36] Ientile, R.; Malecka, B.; Picciurro, V.; Naso, A.; Pedale, S.; Macaione, S. Nitric Oxide Synthase in Chick Embryo Retina During Development, FEBS Letters, 1996; 379(1): pp.82-84.
  • [37] Uçar, E. Nitrik Oksit İnhibisyonunun Piliç Embriyosu Akciğer Gelişimi Üzerine Etkisi, in Fen Bilimleri Enstitüsü, Zooloji Anabilim Dalı, Celal Bayar Üniversitesi: Manisa, 2014; Tez.
  • [38] Liu, Y.; Feng, Q. NOing The Heart: Role of Nitric Oxide Synthase-3 in Heart Development, Differentiation, 2012; 84(1): p. 54-61.
  • [39] Iwakiri, Y.; Kim, M.Y. Nitric Oxide in Liver Diseases, Trends in Pharmacological Sciences, 2015; 36(8): pp.524-536.
  • [40] Nowicki, M.J.; Shi, D.; Cai, Z.; Bishop, P.R.; May, W.L. Developmental Expression of Endothelial Nitric Oxide Synthase (eNOS) in The Rat Liver, Pediatric Research, 2003; 54(5): pp.732-8.
  • [41] Cox, A.G.; Saunders, D.C.; Kelsey, P.B., Jr.; Conway, A.A.; Tesmenitsky, Y.; Marchini, J.F.; Brown, K.K.; Stamler, J.S.; Colagiovanni, D.B.; Rosenthal, G.J.; Croce, K.J.; North, T.E.; Goessling, W. S-nitrosothiol Signaling Regulates Liver Development and Improves Outcome Following Toxic Liver Injury, Cell Reports, 2014; 6(1): p. 56-69.
  • [42] Taylor, B.S.; Alarcon, L.H.; Billiar, T.R. Inducible Nitric Oxide Synthase in the Liver: Regulation and Function, Biochemistry (Mosc), 1998; 63(7): pp.766-81.
  • [43] Myers, P.R.; Tanner, M.A. Vascular Endothelial Cell Regulation of Extracellular Matrix Collagen: Role of Nitric Oxide, Arteriosclerosis, Thrombosis, and Vascular Biology, 1998; 18(5): pp.717-22.
  • [44] Trachtman, H.; Futterweit, S.; Singhal, P. Nitric Oxide Modulates the Synthesis of Extracellular Matrix Proteins in Cultured Rat Mesangial Cells, Biochemical and Biophysical Research Communications, 1995; 207(1): pp.120-125.
  • [45] Xing, Q.; Zhang, L.; Redman, T.; Qi, S.; Zhao, F. Nitric Oxide Regulates Cell Behavior on an Interactive Cell-Derived Extracellular Matrix Scaffold, Journal of Biomedical Materials Research. Part A, 2015; 103(12): p. 3807-14.
  • [46] Kanninen, L.K.; Harjumäki, R.; Peltoniemi, P.; Bogacheva, M.S.; Salmi, T.; Porola, P.; Niklander, J.; Smutný, T.; Urtti, A.; Yliperttula, M.L.; Lou, Y.-R. Laminin-511 and laminin-521-Based Matrices for Efficient Hepatic Specification of Human Pluripotent Stem Cells, Biomaterials, 2016; 103: pp.86-100.
  • [47] Williams, M.J.; Boulter, L.G.; Lu, W.Y.; Bird, T.G.; Fujiwara, H.; Watt, F.M.; Ffrench-Constant, C.; Forbes, S.J. 4 the Extracellular Matrix Protein Laminin Alpha 5 Regulates the Behaviour of Hepatic Progenitor Cells in Regenerating Mouse Liver, Journal of Hepatology, 2013; 58: pp.S2-S3.
  • [48] Lee, D.Y.; Lee, J.H.; Ahn, H.-J.; Oh, S.H.; Kim, T.H.; Kim, H.-B.; Park, S.-W.; Kwon, S.K. Synergistic Effect of Laminin and Mesenchymal Stem Cells on Tracheal Mucosal Regeneration, Biomaterials, 2015; 44: p. 134-142.
  • [49] Govaere, O.; Wouters, J.; Petz, M.; Vandewynckel, Y.-P.; Van den Eynde, K.; Van den broeck, A.; Verhulst, S.; Dollé, L.; Gremeaux, L.; Ceulemans, A.; Nevens, F.; van Grunsven, L.A.; Topal, B.; Vankelecom, H.; Giannelli, G.; Van Vlierberghe, H.; Mikulits, W.; Komuta, M.; Roskams, T. Laminin-332 Sustains Chemoresistance and Quiescence as Part of the Human Hepatic Cancer Stem Cell Niche, Journal of Hepatology, 2016; 64(3): pp.609-17.
  • [50] Rialas, C.M.; Nomizu, M.; Patterson, M.; Kleinman, H.K.; Weston, C.A.; Weeks, B.S. Nitric Oxide Mediates Laminin-Induced Neurite Outgrowth in PC12 Cells, Experimental Cell Research, 2000; 260(2): pp.268-276.
  • [51] Meesters, D.M.; Neubert, S.; Wijnands, K.A.P.; Heyer, F.L.; Zeiter, S.; Ito, K.; Brink, P.R.G.; Poeze, M. Deficiency of Inducible and Endothelial Nitric Oxide Synthase Results in Diminished Bone Formation and Delayed Union and Nonunion Development, Bone, 2016; 83: pp.111-118.