A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation

A Novel Donor-π-Acceptor Type Sensitizer for Dye Sensitized Photochemical Hydrogen Generation

A novel triphenylamine (TPA) based donor-π-acceptor (D-π-A) dye is synthesized and its optical and electrochemical properties are examined by UV-Vis absorption spectroscopy and cyclic voltammetry methods, respectively. The synthesized D-π-A dye plays a role as a visible light sensitizer to wide bandgap TiO2 photocatalyst. Hydrogen evolution reaction (HER) are carried out by using D-π-A dye sensitized TiO2 (Dye/TiO2) under visible light irradiation in the aqueous triethanolamine (TEOA) medium. Photoelectrochemical properties of Dye/TiO2 are investigated by using linear sweep voltammetry (LSV) and chronoamperometry (CA) techniques in the aqueous Na2SO4/TEOA solution and its transient photoelectrochemical response is reached 90 μA cm-2. In addition, phtocatalytic hydrogen evolution rates are found out as 0.52 mmol g-1 h-1 and 1.95 mmol g-1 h-1 by using of Dye/TiO2 and Dye/TiO2/Pt, respectively, which are obtained by in situ photoreduction of H2PtCl6 on the Dye/TiO2 photocatalyst. The mechanism of photochemical HER is explained by electrochemical band levels of the D-π-A dye and TiO2 photocatalyst.

___

  • 1 Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
  • 2 Ma, Y., X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014. 114(19): p. 9987-10043.
  • 3 Huang, J.-F., Y. Lei, T. Luo, and J.-M. Liu, Photocatalytic H2 Production from Water by Metal-free Dye-sensitized TiO2 Semiconductors: The Role and Development Process of Organic Sensitizers. ChemSusChem, 2020. 13(22): p. 5863-5895.
  • 4 Borgarello, E., J. Kiwi, E. Pelizzetti, M. Visca, and M. Grätzel, Photochemical cleavage of water by photocatalysis. Nature, 1981. 289: p. 158-160.
  • 5 Martín-Gomis, L., F. Fernández-Lázaro, and Á. Sastre-Santos, Advances in phthalocyanine-sensitized solar cells (PcSSCs). Journal of Materials Chemistry A, 2014. 2(38): p. 15672-15682.
  • 6 Urbani, M., M. Grätzel, M.K. Nazeeruddin, and T. Torres, Meso- Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014. 114(24): p. 12330-12396.
  • 7 Kong, C., S. Min, and G. Lu, Dye-Sensitized NiSx Catalyst Decorated on Graphene for Highly Efficient Reduction of Water to Hydrogen under Visible Light Irradiation. ACS Catalysis, 2014. 4(8): p. 2763-2769.
  • 8 Joseph, K.L.V., J. Lim, A. Anthonysamy, H.-i. Kim, W. Choi, and J.K. Kim, Squaraine-sensitized composite of a reduced graphene oxide/TiO2 photocatalyst: π–π stacking as a new method of dye anchoring. Journal of Materials Chemistry A, 2015. 3(1): p. 232-239.
  • 9 Nada, A.A., H.A. Hamed, M.H. Barakat, N.R. Mohamed, and T.N. Veziroglu, Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+. International Journal of Hydrogen Energy, 2008. 33(13): p. 3264-3269.
  • 10 Shimidzu, T., T. Iyoda, and Y. Koide, An advanced visible- light-induced water reduction with dye-sensitized semiconductor powder catalyst. Journal of the American Chemical Society, 1985. 107(1): p. 35-41.
  • 11 Wu, Y. and W. Zhu, Organic sensitizers from D-π-A to D-A-π- A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013. 42(5): p. 2039- 2058.
  • 12 Yu, Z., F. Li, and L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy & Environmental Science, 2015. 8(3): p. 760-775.
  • 13 Zhang, X., T. Peng, and S. Song, Recent advances in dye- sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016. 4(7): p. 2365-2402.
  • 14 Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nature Photonics, 2012. 6: p. 162.
  • 15 Lee, S.-H., Y. Park, K.-R. Wee, H.-J. Son, D.W. Cho, C. Pac, W. Choi, and S.O. Kang, Significance of Hydrophilic Characters of Organic Dyes in Visible-Light Hydrogen Generation Based on TiO2. Organic Letters, 2010. 12(3): p. 460-463.
  • 16 Jae-Hong, K. and A. Kwang-Soon, Tri-Branched Tri- Anchoring Organic Dye for Visible Light-Responsive Dye- Sensitized Photoelectrochemical Water-Splitting Cells. Japanese Journal of Applied Physics, 2010. 49(6R): p. 060219.
  • 17 Han, W.-S., K.-R. Wee, H.-Y. Kim, C. Pac, Y. Nabetani, D. Yamamoto, T. Shimada, H. Inoue, H. Choi, K. Cho, and S.O. Kang, Hydrophilicity Control of Visible-Light Hydrogen Evolution and Dynamics of the Charge-Separated State in Dye/TiO2/Pt Hybrid Systems. Chemistry – A European Journal, 2012. 18(48): p. 15368-15381.
  • 18 Choi, S.K., H.S. Yang, J.H. Kim, and H. Park, Organic dye- sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. Applied Catalysis B: Environmental, 2012. 121–122: p. 206-213.
  • 19 Watanabe, M., H. Hagiwara, A. Iribe, Y. Ogata, K. Shiomi, A. Staykov, S. Ida, K. Tanaka, and T. Ishihara, Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014. 2(32): p. 12952-12961.
  • 20 Yu, F.T., S.C. Cui, X. Li, Y.Y. Peng, Y. Yu, K. Yun, S.C. Zhang, J. Li, J.G. Liu, and J.L. Hua, Effect of anchoring groups on N-annulated perylene-based sensitizers for dye-sensitized solar cells and photocatalytic H-2 evolution. Dyes and Pigments, 2017. 139: p. 7-18.
  • 21 Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. Macromolecular Materials and Engineering, 2002. 287(7): p. 442-461.
  • 22 Tiwari, A. and U. Pal, Effect of donor-donor-π-acceptor architecture of triphenylamine-based organic sensitizers over TiO2 photocatalysts for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2015. 40(30): p. 9069-9079.
  • 23 Li, X., S. Cui, D. Wang, Y. Zhou, H. Zhou, Y. Hu, J.-g. Liu, Y. Long, W. Wu, J. Hua, and H. Tian, New Organic Donor– Acceptor–π–Acceptor Sensitizers for Efficient Dye-Sensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visible-Light Irradiation. ChemSusChem, 2014. 7(10): p. 2879- 2888.
  • 24 Dessi, A., M. Monai, M. Bessi, T. Montini, M. Calamante, A. Mordini, G. Reginato, C. Trono, P. Fornasiero, and L. Zani, Towards Sustainable H2 Production: Rational Design of Hydrophobic Triphenylamine-based Dyes for Sensitized Ethanol Photoreforming. ChemSusChem, 2018. 11(4): p. 793-805.
  • 25 Aslan, E., M.K. Gonce, M.Z. Yigit, A. Sarilmaz, E. Stathatos, F. Ozel, M. Can, and I.H. Patir, Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye- sensitized TiO2. Applied Catalysis B: Environmental, 2017. 210: p. 320-327.
  • 26 Patir, I.H., E. Aslan, G. Yanalak, M. Karaman, A. Sarilmaz, M. Can, M. Can, and F. Ozel, Donor-π-acceptor dye-sensitized photoelectrochemical and photocatalytic hydrogen evolution by using Cu2WS4 co-catalyst. International Journal of Hydrogen Energy, 2019. 44(3): p. 1441-1450.
  • 27 Aslan, E., M. Karaman, G. Yanalak, M. Can, F. Ozel, and I.H. Patir, The investigation of novel D-π-A type dyes (MK-3 and MK-4) for visible light driven photochemical hydrogen evolution. Dyes and Pigments, 2019. 171: p. 107710.
  • 28 Aslan, E., M. Karaman, G. Yanalak, H. Bilgili, M. Can, F. Ozel, and I.H. Patir, Synthesis of novel tetrazine based D-π-A organic dyes for photoelectrochemical and photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2020. 390: p. 112301.
  • 29 Swinehart, D.F., The Beer-Lambert Law. Journal of Chemical Education, 1962. 39(7): p. 333.
  • 30 Luo, G.-G., H. Lu, Y.-H. Wang, J. Dong, Y. Zhao, and R.-B. Wu, A D-π-A-π-A metal-free organic dye with improved efficiency for the application of solar energy conversion. Dyes and Pigments, 2016. 134: p. 498-505.
  • 31 Cardona Claudia, M., W. Li, E. Kaifer Angel, D. Stockdale, and C. Bazan Guillermo, Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials, 2011. 23(20): p. 2367-2371.
  • 32 Margalias, A., K. Seintis, M.Z. Yigit, M. Can, D. Sygkridou, V. Giannetas, M. Fakis, and E. Stathatos, The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes and Pigments, 2015. 121: p. 316-327.