Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode

Here, metal nanoparticles modified conductive polymer film electrode was fabricated via electrochemical technique. Methylene blue was electrochemically polymerized on the bare glassy carbon electrode surface. Then palladium nanoparticles were modified on the polymer surface by consecutive potential cycles. Resulting composite electrode was characterized with scanning electron microscopy and electrochemical impedance spectroscopy. Palladium nanoparticles modified poly(methylene blue) film glassy carbon electrode was used for sensitive and selective determination of vanillin with two linear ranges between 0.02 - 1 µM and 2 - 50 µM and a limit of detection as 0.01 µM. Proposed electrode accurately determine vanillin content in commercial biscuit and cake samples

___

  • 1. Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z. 2017. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta; 170: 384–391.
  • 2. Almeida ARRP, Freitas VLS, Campos JIS, da Silva MDMCR, Monte MJS. 2019. Volatility and thermodynamic stability of vanillin. Journal of Chemical Thermodynamics; 128: 45–54.
  • 3. Altunay N. Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultravioletvisible spectrophotometry. 2018. LWT - Food Science and Technology; 93: 9–15.
  • 4. Minematsu S, Xuan G-S, Wu X-Z. 2013. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. Journal of Environmental Sciences; 25: S8–S14.
  • 5. Shen Y, Han C, Liu B, Lin Z, Zhou X, Wang C, Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. Journal of Dairy Science; 9: 679–686.
  • 6. Timotheou-Potamia M, Calokerinos AC. 2007. Chemiluminometric determination of vanillin in commercial vanillin products. Talanta; 71: 208–212.
  • 7. Palanisamy S, Kokulnathan T, Chen S-M, Velusamy V, Ramaraj SK. 2017. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. Journal of Electroanalytical Chemistry; 794: 64–70.
  • 8. Kumar AA, Swamy BEK, Rani TS, Ganesh PS, Raj YP. 2019. Voltammetric determination of catechol and hydroquinone at poly (murexide) modified glassy carbon electrode. Materials Science & Engineering C; 98: 746–752.
  • 9. Shahrokhian S, Hafezi-Kahnamouei M. 2018. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. Journal of Electroanalytical Chemistry; 825: 30–39.
  • 10. Manasa G, Mascarenhas RJ, Satpati AK, D'Souza OJ, Dhason A. 2017. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Materials Science and Engineering C; 73: 552–561.
  • 11. Brett CMA, Inzelt GÈ, Kertesz V. 1999. Poly(methylene blue) modified electrode sensor for haemoglobin. Analytica Chimica Acta; 385: 119-123.
  • 12. Sun W, Wang Y, Zhang Y, Ju X, Li G, Sun Z. 2012. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Analytica Chimica Acta; 751: 59–65.
  • 13. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, Wu Z. 2012. Attapulgite with poly(methylene blue) composite film:Electrocatalytic determination of ascorbic acid. Solid State Sciences; 14: 362-366.
  • 14. Dilgin Y, Canarslan S, Ayyildiz O, Ertek B, Nişli G. 2012. Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode. Electrochimica Acta; 66: 173–179.
  • 15. Ahmed AM, Sayed SY, El-Nagar GA, Morsi WM, El-Deab MS, El-Anadouli BE. 2019. Enhanced electrocatalytic oxidation of glucose at graphene nanosheets–Metal oxides nanoparticles modified GC electrodes. Journal of Electroanalytical Chemistry; 835: 313–323.
  • 16. Arslan E, Çakır S. 2016. Electrochemical fabrication of polyproline modified graphite electrode decorated with Pd–Au bimetallic nanoparticles: Application for determination of carminic acid. Journal of Electroanalytical Chemistry; 760: 32–41.
  • 17. Daneshvar L, Rounaghi GH, Es'haghi Z, Chamsaz M, Tarahomi S. 2016. Fabrication a new modified electrochemical sensor based on Au–Pd bimetallic nanoparticle decorated graphene for citalopram determination. Materials Science and Engineering C; 69: 653–660.
  • 18. Shang L, Zhao F, Zeng B. 2014.Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chemistry; 151: 53-57.
  • 19. Koçak ÇC, Karabiberoğlu Ş. 2018. Electrochemical Vanillin Determination on Gold Nanoparticles Modified Multiwalled Carbon Nanotube Electrode. Dokuz Eylul University-Faculty of Engineering, Journal of Science and Engineering; 20(59): 461-470.
  • 20. Huang L, Hou K, Jia X, Pan H, Du M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Material Science and Engineering C; 38: 39-45.