Preparation of Dextran Cryogels and Some of Their Applications

In this study, dextran (DEX) cryogels were prepared using 50% divinyl sulfone (DVS) crosslinker based on the repeating unit of DEX, under cryogenic conditions via cryogellation technique. It was shown that DEX cryogels can be used as column fillers to remove toxic substances such as organic dye, methylene blue (MB), pesticide, and paraquat (PQ) which are harmful to the environment and human health. The maximum absorption capacity of 15 mg DEX cryogels was determined as 10.69±0.14 mg/g using 5 mL of 100 ppm MB dye in about seven minutes, and as 2.87±0.33 mg/g from 5 mL of 40 ppm PQ pesticide in about ten minutes. The reusability of DEX cryogel for MB was also examined. In the consecutive use of DEX cryogel weighing ~30 mg, initially cryogel absorbed 6.43±0.15 mg MB/g cryogel from 20 ppm 30 mL MB dye, but this value decreased to 4.71±0.48 mg MB/g cryogel after the fifth use. The same cryogel released the same amount of MB dye after the first use of 3.78±0.33 mg MB/g cryogel, but after the fifth use the release amount decreased to 0.92±0.38 mg MB/g cryogel upon treatment with 1 M 30 mL HCl solution. The adsorption kinetics of DEX cryogel for MB were also examined and the Langmuir isotherm model with a correlation coefficient of 0.9983 and the KL value of 0.36, representing the best fit amongst the other wellknown models such as the Freundlich isotherm, Temkin, Elovich and DubininRadushkevich.

Dekstran Kriyojellerinin Hazırlanması ve Bunların Bazı Uygulamaları

Bu çalışmada, dekstran (DEX) kriyojeleri, tekrarlayan DEX birimine göre %50 divinil sülfon (DVS) çapraz bağlayıcı kullanılarak kriyojenik koşullar altında kriyojelasyon tekniği ile hazırlanmıştır. DEX kriyojellerinin çevreye ve insan sağlığına zararlı organik boya, metilen mavisi (MB), pestisit, parakuat (PQ) gibi toksik maddeleri uzaklaştırmak için kolon dolgu maddesi olarak kullanılabileceği gösterilmiştir. DEX kriyojelinin 15 mg’ı için maksimum absorpsiyon kapasitesine, MB için yaklaşık yedi dakikada 5 mL-100 ppm çözeltiden 10,69±0,14 mg/g, PQ için ise yaklaşık on dakikada 2,87±0,33 mg/g absorblayarak ulaşmıştır. DEX kriyojelinin MB için yeniden kullanılabilirliği de yapılmıştır. ~30 mg ağırlığındaki DEX kriyojelinin art arda kullanımında, başlangıçta 20 ppm, 30 mL olan MB çözeltisinden absorplanan miktar 6,43±0,15 mg MB/g kriyojel olarak hesaplanmış, bu değer beşinci kullanımdan sonra 4,71±0,48 mg MB/g kriyojel olarak hesaplanmıştır. MB absorplamış DEX kriyojeli ile yapılan salım çalışmalarında ilk kullanımda 3,78±0,33 mg MB/g kriyojel salmıştır, ancak beşinci kullanımdan sonra, salınan miktar, 1 M 30 mL HC1 ile muamele üzerine 0,92±0,38 mg MB/g kriyojel olarak hesaplanmıştır. DEX kriyojelinin MB için adsorpsiyon kinetiği de incelenmiş olunup, 0,9983 korelasyon katsayısı ve 0,36 KL değeri ile Freundlich, Temkin, Elovich ve Dubinin-Radushkevich izotermleri gibi diğer iyi bilinen modeller arasında en uygun olan Langmuir izoterm modelini temsil ettiği belirlenmiştir.

___

Akilbekova D., Shaimerdenova, Adilov S., Berillo D., 2018. Biocompatible scaffolds based on natural polymers for regenerative medicine. International Journal of Biological Macromolecules, 114:324-333.

Arriba M.G., Puertas A.I., Prieto A., Lopez P., Cobos M., Miranda J.I., Marieta C., Madiedo P. Duenas T., 2019. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 89:613-622.

Berillo D., Elowsson L., Kirsebom H., 2012. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. Macromolecular Bioscience, 12:1090-1099.

Bölgen N., Aguilar M.R., Fernandez M.M., Flores S.G, Rodil S.V., Roman J.S, Pişkin E., 2015. Thermoresponsive biodegradable HEMA–Lactate–Dextran-co-NIPA cryogels for controlled release of simvastatin. Artificial Cells Nanomedicine and Biotechnology, 43:40-49.

Ciolacu D., Rudaz C., Vasilescu M., Budtova T., 2016. Physically and chemically crosslinked cellulose cryogels: Structure, properties and application for controlled release. Carbohydrate Polymers, 151:392-400.

Eggermont L.J., Rogers Z.J., Colombani T., Memic A., Bencherif S.S., 2019. Injectable cryogels for biomedical applications. Trends in Biotechnology, https://doi.org/10.1016/j.tibtech.2019.09.008

Ferreira L., Gil M.H., Dordick J.S., 2002. Enzymatic synthesis of dextran-containing hydrogels. Biomaterials, 23:3957-3967.

Fil B. A., Yilmaz M.T., Bayar S., Elkoca M.T., 2014. Investigation of adsorption of the dyestuff astrazon red violet 3RN (basıc violet 16) on montmorillonite clay. Brazilian Journal of Chemical engineering, 31:171-182.

Guo F., Wang Y., Chen M., Wang C., Kuang S., Pan Q, Ren D., Chen Z., 2019. Lotus-Rootlike supermacroporous cryogels with superphilicity for rapid separation of oil-in-water emulsions. ACS Applied Polymer Materials, 1:2273-2281.

Habeeb O.A., Kanthasamy R., Ali G.A.M., Yunus R.M., Olalere O.A., 2017. Kinetic, isotherm and equilibrium study of adsorption of hydrogen sulfide from wastewater using modified eggshells. IIUM Engineering Journal, 18:13-25.

Hamdaoui O., Nafferechoux E., 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147:381-394.

Hixon K.R., Lu T., Sell S.A., 2017. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomaterialia, 62:29-41.

Hotzel K., Heinze T., 2016. Novel dextran derivatives with unconventional structure formed in an efficient one-pot reaction. Carbohydrate Research, 434:77-82.

Levesque S.G., Lim R.M., Shoichet M.S., 2005. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 26:7436-7446.

Orakdogen N., Karacan P., Okay O., 2011. Macroporous, responsive DNA cryogel beads. Reactive and Functional Polymers, 71: 782-790.

Sahiner N., Butun S., Ilgin P., 2011. Hydrogel particles with core shell morphology for versatile applications: Environmental, biomedical and catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386: 16-24.

Sahiner N., Demirci S., 2016. Poly ionic liquid cryogel of polyethyleneimine. Synthesis, characterization, and testing in absorption studies. Journal of Applied Polymer Science, 133:43478.

Sahiner N., Demirci S., Sahiner M., Yilmaz S., Al-Lohedan H., 2015. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. Journal of Environmental Management, 152:66-74.

Sahiner N., Sagbas S., Sahiner M., Silan C., 2017. P(TA) macro-, micro-, nanoparticleembedded super porous p(HEMA) cryogels as wound dressing material. Materials Science & Engineering C, 70:317-326.

Sengel S.B., Sahiner M., Aktas N., Sahiner N., 2017. Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Applied Clay Science, 140:66-74.

Siddiqui N.N., Aman A., Silipo A., Quader S.A., 2014. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers, 99:331-338.

Suner S.S., Demirci S., Yetiskin B., Fakhrullin R., Naumenko E., Okay O., Ayyala R. S., Sahiner N., 2019. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. International Journal of Biological Macromolecules, 130:627-635.

Tavsanli B., Okay O., 2020. Macroporous methacrylated hyaluronic acid cryogels of high mechanical strength and flow-dependent viscoelasticity. Carbohydrate Polymers, 229: https://doi.org/10.1016/j.carbpol.2019.115458.

Topuz F., Uyar T., 2017. Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from Water. Journal of Hazardous Materials, 335:108-116.

Tripathi A., Vishnoi T., Singh D., Kumar A., 2013. Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromolecular Bioscience, 13:838-850.

Villard P., Rezaeeyazdi M., Colombani T., Navare K., Rana D., Memic A., Bencherif S.S., 2019. Autoclavable and injectable cryogels for biomedical applications. Advanced Healthcare Materials, doi: 10.1002/adhm.201900679.

Wang B., Song Q., Zhao F., Zhang L., Han Y, Zhou Z., 2019. Isolation and characterization of dextran produced by Lactobacillus sakei L3 from Hubei sausage. Carbohydrate Polymers, 223:https://doi.org/10.1016/j.carbpol.2019.115111.

Ye G., Li G., Wang C., Ling B., Yang R., Huang S., 2019. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydrate Polymers, 207:218-223.

Xiong J., Li G., Hu C., 2019. Treatment of methylene blue by mesoporous Fe/SiO2 prepared from rice husk pyrolytic residues. Catalysis Today, doi.org/10.1016/j.cattod.2019.06.059.

Zafar S.B., Siddiqui N.N., Shahid F., Qader S.S., Aman A., 2018. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal of Genetic Engineering and Biotechnology, 16:17-22.

Zhang J.F. Wang Y., Lam M.L, McKinnnie R.J. Claycomb W.C, Xu X., 2017. Cross-linked poly(lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies, 13:306-316.

Zhao X., Guo B., Wu H., Liang Y., Ma P.X., 2018. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nature Communications, 9:2784 doi: 10.1038/s41467-018-04998-9.
Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2459-1580
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü