Determination of genetic divergence in some bread wheat varieties by IRAP and ISSR analyses

Bu çalışmada ekmeklik buğday genotiplerindeki genetik uzaklık ölçümü yapılarak genotip farklılıklarının tespiti ve kromozom haritalamasının ıslah programları, elit tohum üretimleri gibi farklı amaçlar için kullanılabilirliğinin gösterilmesi amaçlanmıştır.12 ekmeklik buğday genotipli ekmeklik buğday genotiplerinin (Bozkır, Harmankaya 99, Altay 2000, Yıldırım, Bezostaja 1, Ahmetağa, Müfitbey, Aldane, Es 26, Alperbey, Atay 85 ad Eraybey) genetik çeşitliliği ISSR ve IRAP teknikleri ile incelenmiştir. Hızlı moleküler teknikler olarak, ISSR ve IRAP yöntemleri, hem genetik keşif ve değerlendirme hem de seçkin yetiştirme ve üretim materyallerinin korunması için ıslah programlarına etkin bir şekilde dahil edilebilir. ISSR ve IRAP belirteçleri kullanılarak üretilen dendrogramda 12 genotip iki ana küme halinde sınıflandırıldı. İlk küme Bozkır, Harmankaya 99, Altay 2000, Yıldırım, Bezostaja 1, Ahmetağa ve Müfitbey'i içerirken, ikinci Küme Aldane, Es 26, Alperbey, Atay 85 ve Eraybey'i içermektedir. Ayrıca bu çalışmada elde edilen sonuçlar ISSR ve IRAP yöntemlerinin ekmeklik buğday genotiplerinin tanımlanmasında etkili olduğunu göstermiştir.

Determination of genetic divergence in some bread wheat varieties by IRAP and ISSR analyses

In this study, it was aimed to detect the differences of genotypes through the measurement of genetic distance in bread wheat genotypes and to show the usability of chromosome mapping for different aims such as breeding programs, elite seed productions. The genetic diversity of 12 bread wheat genotypes bread wheat genotypes (Bozkır, Harmankaya 99, Altay 2000, Yıldırım, Bezostaja 1, Ahmetağa, Müfitbey, Aldane, Es 26, Alperbey, Atay 85 ad Eraybey) was examined through ISSR and IRAP techniques. As fast molecular techniques, ISSR and IRAP methods can be effectively included in breeding programs both for genetic exploration and evaluation and for the protection of elite breeding and production materials. 12 genotypes were classified into two main clusters in the dendrogram produced by using the ISSR and IRAP markers. While Cluster I included Bozkır, Harmankaya 99, Altay 2000, Yıldırım, Bezostaja 1, Ahmetağa and Müfitbey, cluster II included Aldane, Es 26, Alperbey, Atay 85 and Eraybey. Furthermore, the results obtained in this study indicated that ISSR and IRAP methods were effective for the definition of bread wheat genotypes.

___

  • [1]Christopher, J.T., Manschadi, A.M., Hammer, G.L., Borrell, A.K. (2008). Developmental and physiological traits associated with high yield mand stay-green phenotype in wheat. Australian J Agric Res 59,354–364.
  • [2] Borlaug, N.E., Dowswell, C.R. (1997). The acid lands: One of Agriculture’s Lastfrontiers, In: Plant – soil Interactions at Low pH. Moniz, A. C. Et al. (eds.). Brazilian Soil Science Society Brazil 5-15.
  • [3]Aycicek, M., Yıldırım, T. (2006). Adaptability Performances of Some Bread Wheat (TriticumaestivumL.) Genotypes in The Eastern Region of Turkey. Int J Sci and Tech 1(2), 83-89 .
  • [4]Trethowan, R.M., Pena, R.J., Ginkel, M. (2000). Breeding for grain quality: A manipulation of gene frequency Proceedings of the 6th International Wheat Conference June 2000 Budapest Hungary.
  • [5]Singh, A.J., Byerleee, D. (1990). Relative Variability in Wheat Yields Across Countries and over Years. J Agric Econ 41, 2–32.
  • [6] Cooper, M., Woodruff, D.R., Phillips, I.G., Basford, K.E., Gilmour, A.R. (2001). Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res 69, 47–67.
  • [7] Richards, R.A., Rebetzke, G.J., Condon, A.G., Herwaarden, A.F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42, 111–121.
  • [8]Kaya,Y., Palta, Ç., Taner, S. (2002). Additive Main Effects and Multiplicative Interactions Analysis of Yield Performances in Bread Wheat Genotypes across Environments. Türk J Agric Fort 26, 275-279.
  • [9] Boubakar, M., Hammouda, M.B., Sakouhi, L. (1999). Adaptation and Yield Stability of Three Cereal Species in Semi-arid and Sub-humid Regions of Tunusia. Secheresse 10(4), 273-279.
  • [10] FAO (1998) .The States of the World’s Plant Genetic Resources for Food and Agriculture p 510 FAO Rome Italy.
  • [11] Huang, X.Q., Börner, A., Röder, M.S., Ganal, M.W.(2002). Assessing genetic diversity of wheat (Triticumaestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105, 699–707.
  • [12] Engles, J.M.M., Rao, V.R., Brown, A.H.D. & Jackson, M.T. (2002). Managing Plant Genetic Diversity. p 48, CABI Publishing UK..
  • [13] Carvalho, A., Guedes-Pinto, H., Martins-Lopes, P., Lima-Brito, J. (2010). Genetic variability of Old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Annals of App biology 156(3), 337-345.
  • [14]Nasri, S., Abdollahi Mandoulakani, B., Darvishzadeh, R., Bernousi, I. (2013). Retrotransposon Insertional Polymorphism in Iranian Bread Wheat Cultivars and Breeding Lines Revealed by IRAP and REMAP Markers. Biochemical Genetics 51(11-12), 927–943.
  • [15] Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C. (2011). Analysis of plant diversity with retrotransposonbased molecular markers. Heredity 106, 520-530.
  • [16]Lou, Q., Chen, J. (2007). Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50, 802-810.
  • [17]Giancarla, V., Emilian, M., Radu, S., Sorin, C., Sorina, P., Cerasela, P. (2012). The use of RAPD and ISSR markers for genetic diversity among some barley cultivars. Rom Biotechnol Lett 17(4), 7493–7503.
  • [18]Kantety, R.V., Zeng, X.P., Bennetzen, J.L. and Zehr, B.E. (1995). Assesment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter simple sequence repeat (ISSR) amplification. Mol. Breeding, 1, 365–73.
  • [19]Nagoaka, T. and Ogihara, Y. (1997). Applicability of inter- simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94, 597–602.
  • [20]Blair, M.W., Panaud, O. and Mc Couch, S.R. (1999). Inter- simple sequence repeat (ISSR) amplification for analysis of micro-satellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98, 780–92.
  • [21]Hou, Y.C., Yan, Z.H., Wei, Y.M. and Zheng, Y.l. (2005). Genetic diversity ib barley from west China based on RAPD and ISSR analysis. Barley Genetic Newsletter 35, 9–12.
  • [22]Carvalho, A., Lima-Brito, J., Maçãs, B. & Guedes-Pinto, H. (2009). Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochemical Genetics , 47(3-4), 276-294.
Biyolojik Çeşitlilik ve Koruma-Cover
  • ISSN: 1308-5301
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Ersin YÜCEL