Spinor Q-Equations in Lorentzian 3-space E_1^3

Spinor Q-Equations in Lorentzian 3-space E_1^3

In this paper, hyperbolic spinor representations of space curves are studied according to the q-frame in E_1^3. The spinor formulations of curves are calculated for the q-frame according to the spacelike and timelike tangent vector cases of the curves in E_1^3. Moreover, the relationships of spinor equations between q-frame and Frenet frame in Lorentz space are expressed. The results are supported with some theorems.

___

  • [1] E. Cartan, The Theory of Spinors. Paris: Hermann, 1966 (Dover, New York, reprinted 1981).
  • [2] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation. San Francisco CA: W. H. Freeman and Company, 1973.
  • [3] B. W. Montague, “Elemenatry Spinor Algebra for Polarized Beams in Strage Rings”, Particle Accelerators, vol. 11, pp. 219-231, 1981.
  • [4] G. F. Torres del Castillo and G. S. Barrales, “Spinor Formulation of the Differential Geometry of Curve”, Rev. Colombiana Mat., vol. 38, pp. 27-34, 2004.
  • [5] D. Unal, I. Kisi and M. Tosun, “Spinor Bishop Equation of Curves in Euclidean 3-Space”, Adv. Appl. Cliff. Algebr., vol. 23, pp. 757–765, 2013.
  • [6] I. Kisi and M. Tosun, “Spinor Darboux Equations of Curves in Euclidean 3-Space”, Math. Morav, vol. 19, pp. 87-93, 2015.
  • [7] T. Erisir, M. A. Güngör and M. Tosun, “Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame”, Adv. Appl. Cliff. Algebr, vol. 25, pp. 799-810, 2015.
  • [8] Y. Balci, T. Erisir and M. A. Güngör, “Hyperbolic Spinor Darboux Equations of Spacelike Curves in Minkowski 3-Space”, J. Chungcheong Math. Soc., vol. 28, pp. 525-535, 2015.
  • [9] S. Coquillart, “Computing Offsets of B-spline Curves”, Computer-Aided Design, vol. 19, pp. 305-309, 1987.
  • [10] H. Shin, S. K. Yoo, S. K. Cho and W. H. Chung, “Directional Offset of a Spatial Curve for Practical Engineering Design”, International Conference on Computational Science and its Applications, ICCSA, 2003, Montreal, Canada, May 18–21, 2003, Proceedings, Part II, pp. 711-720.
  • [11] M. Dede, C. Ekici and A. Görgülü, “Directional q-Frame along A Space Curve”, IJARCSSE, vol. 5, pp. 775-780, 2015.
  • [12] C. Ekici, M. B. Göksel and M. Dede, “Smarandache Curves According to q-Frame in Minkowski 3- Space”, 17th International Geometry Symposium, 2019, Erzincan, Turkey, 19-22 June, 2019, Proceedings, pp. 110-118.
  • [13] B. O’Neill, Semi-Riemannian Geometry, with Applications to Relativity. New York: Academic Press, 1983.
  • [14] W. Kuhnel, Differential Geometry: Curves – Surfaces – Manifolds. Weisbaden: Braunscheweig, 1999.
  • [15] T. Otsuki, Differential Geometry (Japanese). Tokyo: Asakura Shoten, 1961.
  • [16] T. Ikawa, “On Curves and Submanifolds in an Indefinite-Riemannian Manifold”, Tsukuba J. Math., vol. 9, pp. 353–371, 1985.
  • [17] C. Ekici, M. Dede and H. Tozak, “Timelike Directional Tubular Surfaces”, Journal of Mathematical Analysis, vol. 8, pp. 1-11, 2017.
  • [18] G. S. Birman and K. Nomizu, “Trigonometry in Lorentzian Geometry”, Ann. Math. Mont., vol. 91, pp. 534–549, 1984.
  • [19] G. Sobczyk, “The Hyperbolic Number Plane”, College Math. J., vol. 26, pp. 268–280, 1995.
  • [20] M. Carmel, Group Theory and General Relativity, Representations of the Lorentz Group and their Applications to the Gravitational Field. New York: McGraw- Hill, Imperial College Press, 1977.
  • [21] D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. New York: Springer, 1986.
  • [22] G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications. Boston: Birkhauser, 2003.
  • [23] Z. Ketenci, T. Erisir and M. A. Gungor, “Spinor Equations of Curves in Minkowski Space”, V. Congress of the Turkic World Mathematicians, 2014, Issyk, Kyrgyzstan, 5-7 June, 2014, Proceedings, pp. 41.
  • [24] M. K. Saad and R. A. Abdel-Baky, “On Ruled Surfaces According to Quasi-Frame in Euclidean 3- Space”, Aust. J. Math. Anal. Appl., vol. 17, pp. 16, 2020.