Ekmeklik Buğday Çeşitlerinde Sarı Pas Direnç Genlerini Tespit Eden Bazı Markörlerin Etkinliğinin İncelenmesi

Sarı pas, (Puccinia striiformis Westend. f. sp. tritici) buğday üretiminde ciddi kayıplara neden olan en önemli buğday hastalıkları arasında yer almaktadır. Hastalıkla mücadelede kimyasal fungusitler yaygın olarak kullanılmaktadır. Ancak kimyasal mücadele ekonomik olmadığı gibi çevre kirliliğine de neden olmaktadır. Bu sebeple üretimde dayanıklı buğday çeşitlerin kullanılması kritik bir öneme sahiptir. Sarı pas hastalığına karşı dayanıklılık, Yr genleri ile ifade edilmektedir. Islah çalışmalarında kullanılacak ebeveynlerin hangi dayanıklılık genine sahip olduğunu bilmek, yeni dirençli çeşitlerin geliştirilmesinde büyük avantaj sağlamaktadır. Bu çalışma, sarı pas hastalığına karşı direnç genlerinin saptanmasında kullanılan belirteçlerin etkinliğini belirlemeyi amaçlamaktadır. PZR yöntemiyle sarı pas hastalığına karşı direnci sağlayan dokuz gen (Yr9, Yr10, Yr15, Yr26, Yr29, Yr36, Yr48, Yr51 ve YrCH52) için tanımlanmış moleküler markörlerin (Xgwm582, RgaYr10a, Xgwm413, Xgwm11, Wmc44, Barc101, Cfa2149, Sun104, Xgwm273) etkinliği araştırılmıştır. Materyal olarak, yirmi ekmeklik buğday çeşidi kullanılmıştır. PCR tabanlı moleküler markörler kullanılarak belirlenen direnç gen profilleri ile tescil bilgisi ve literatürde geçen tarla dayanıklılık verileri karşılaştırmalı olarak analiz edilmiştir. Analiz sonucunda farklı direnç genleri için tanımlanmış markörlerin, buğday çeşitlerinin direnç gen profilini tespit etmedeki etkinlik durumları belirlenmiştir. Ayrıca, tarladaki dayanıklılığı bilinen çeşitlerle hassas çeşitlerin direnç gen profilleri karşılaştırılmış, direnci sağlamada öne çıkan ve markörlerle tespit edilen genler belirlenmiş ve bu genlerin homozigot/heterozigot durumlarına göre verimlilikleri değerlendirilmiştir. Tüm buğday çeşitlerinde pozitif sonuç veren RgaYr10a, Xgwm413, Barc101 ve Cfa2149 gibi markörlerin etkinliğinin düşük olduğu sonucuna varılmıştır.

The Efficacity Investigation for Some Markers Detecting Yellow Rust Resistance Genes in Bread Wheat Varieties

Yellow rust is (Puccinia striiformis Westend. f. sp. tritici) is among the supreme diseases causing serious losses in wheat production. The chemical fungicides are commonly used in this disease-fighting. However, chemical control is not economical and also causes environmental pollution. Therefore, the use of resistant wheat varieties in production has critical importance. The resistance against yellow rust disease is expressed with Yr genes. In the breeding studies, knowing which parents include resistance genes provides a great advantage in the development of new resistant varieties. This study aims to determine the efficiency of markers used to detect resistance genes against yellow rust disease. The efficiency of molecular markers (Xgwm582, RgaYr10a, Xgwm413, Xgwm11, Wmc44, Barc101, Cfa2149, Sun104, Xgwm273) that are identified for nine genes (Yr9, Yr10, Yr15, Yr26, Yr29, Yr36, Yr48, Yr51, and YrCH52) providing resistance against yellow rust disease was investigated using PCR method. Twenty bread wheat varieties were used as material. Resistance gene profiles determined using PCR-based molecular markers and data obtained from registration information and field resistance data in the literature were analysed comparatively. As a result of the analysis, the efficiency/productivity of the markers defined for different resistance genes in detecting the resistance gene profile of wheat varieties was determined. Moreover, resistance gene profiles of varieties that are known resistance states in the field and sensitive varieties were compared. Genes that are prominent in providing resistance and detected with markers were determined and the efficiency of these genes was evaluated according to their homozygous/heterozygous states. It was concluded that the efficacy of markers such as RgaYr10a, Xgwm413, Barc101, and Cfa2149, which gave positive results in all wheat varieties, was low.

___

  • Neupane, D., Adhikari, P., Bhattarai, D., Rana, B., Ahmed, Z., Sharma, U., & Adhikari, D. (2022). Does Climate Change Affect The Yield of The Top Three Cereals and Food Security in The World?. Earth, 3(1), 45-71.
  • Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of Climate Change on The Yield of Cereal Crops: A review. Climate, 6(2), 41.
  • Akan, K., (2019). Sarı Pas (Puccinia striiformis f. sp. tritici) Hastalığına Dayanıklı Makarnalık Buğday Hatlarının Geliştirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(4), 661–670.
  • Bhardwaj, S. C., Singh, G. P., Gangwar, O. P., Prasad, P., & Kumar, S. (2019). Status of Wheat Rust Research and Progress in Rust Management-Indian Context. Agronomy, 9(12), 892.
  • Kuraparthy, V., Chhuneja, P., Dhaliwal, H. S., Kaur, S., Bowden, R. L., & Gill, B. S. (2007). Characterization and Mapping of Cryptic Alien Introgression from Aegilops Geniculata with New Leaf Rust and Stripe Rust Resistance Genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 114(8), 1379-1389.
  • Kiss, L., & Veres, S. (2017). Study of Yellow Rust Infection on Various Winter Wheat Genotypes. Columella: Journal of Agricultural and Environmental Sciences, 4(2), 27-32.
  • Ren, R. S., Wang, M. N., Chen, X. M., & Zhang, Z. J. (2012). Characterization and Molecular Mapping of Yr52 for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Germplasm PI183527. Theoretical and Applied Genetics. 125(5), 847– 857.
  • Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A Diagrammatic Scale for Estimating Rust Intensity on Leaves and Stems of Cereals. Canadian journal of research, 26(5), 496-500.
  • Walli, M. H., Al-Jubouri, Z., Madumarov, M. M., Margaryta, M., & Aldibe, A. A. A. (2022). Genetic and Environment Diversity to Improve Wheat (Triticum spp.) Productivity: A review. Research on Crops, 23(2), 295-306.
  • Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent Advancements in Molecular Marker-assisted Selection and Applications in Plant Breeding Programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 1-26.
  • Chen, X. M. (2005). Epidemiology and Control of Stripe Rust (Puccinia striiformis f. sp. Tritici) on Wheat. Canadian journal of plant pathology, 27(3), 314-337.
  • Babu, P., Baranwal, D. K., Pal, D., Bharti, H., Joshi, P., Thiyagarajan, B., Gaikwad, K. B., Bhardwaj, S. C., Singh, G. P., & Singh, A. (2020). Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. Frontiers in Plant Science, 11, 1-18.
  • Cristina, D., Turcu, A. G., Marinciu, C. M., Serban, G., Galit, I., Contescu, E. L., Mandea, V., & Cıcua, M. (2021). DNA Markers-assisted Selection to Pyramid Rust Resistance Genes in Wheat Breeding Lines. Seria Agronomie, 64(1), 15-20.
  • Das, B. K., Saini, A., Bhagwat, S. G., & Jawali, N. (2006). Development of SCAR Markers for Identification of Stem Rust Resistance Gene Sr31 in the Homozygous or Heterozygous Condition in Bread Wheat. Plant Breeding, 125(6), 544-549.
  • Yao, F., Zhang, X., Ye, X., Li, J., Long, L., Yu, C., Li, J., Wang, Y., Wu, Y., Wangi J., Jiang, Q., Li, J., Wei, Y., Zheng, Y., & Chen, G. (2019). Characterization of Molecular Diversity and Genome-Wide Association Study of Stripe Rust Resistance at the Adult Plant Stage in Northern Chinese Wheat Landraces. BMC genetics, 20(1), 1-16.
  • Akın, B., Zencirci, N., & Özseven. İ. (2008). Field Resistance of Wheat (Triticum aestivum L.) Genotypes from Different Countries to Leaf Rust (Puccinia triticina). Turkish Journal of Agriculture Forestry, 32(6), 479-486.
  • Doyle, J. J., & Doyle, J. L., (1987). Isolation of Plant DNA from Fresh Tissue. Focus, 12, 13-15.
  • Grain Genes A Database for Triticeae and Avena. https://wheat.pw.usda.gov (29.11.2022).
  • Cabuk, E., Aydin, Y., & Uncuoglu, A. A. (2011) Assessing Wheat (Triticum aestivum) Genotypes for ‘‘Yr’’ Resistance Genes Using Conserved Regions and Simple-Sequence Motifs, Genetics and Molecular Research, 10(4), 3463–3471.
  • Yuan, C., Wu, J., Yan, B., Hao, Q., Zhang, C., Lyu, B., Ni, F., Caplan, A., Wu, J., & Fu, D. (2018). Remapping of the Stripe Rust Resistance Gene Yr10 in Common Wheat. Theoretical and Applied Genetics, 131(6), 1253-1262.
  • Zheng, S., Li, Y., Lu, L., Liu, Z., Zhang, C., Ao, D., Lirong, L., Zhang, C., Liu, R., Luo, C. Wu, Y., & Zhang, L. (2017). Evaluating the Contribution of Yr Genes to Stripe Rust Resistance Breeding Through Marker-Assisted Detection in Wheat, Euphytica. 213(2), 1-16.
  • Rani, R., Singh, R., & Yadav, N. R. (2019). Evaluating Stripe Rust Resistance in Indian Wheat Genotypes and Breeding Lines Using Molecular Markers. Comptes Rendus Biologies, 342(5-6), 154-174.
  • Rosewarne, G. M., Singh, R. P., Huerta-Espino, J., William, H. M., Bouchet, S., Cloutier, S., McFadden, H., & Lagudah, E. S. (2006). Leaf Tip Necrosis, Molecular Markers and Β1- proteasome Subunits Associated with the Slow Rusting Resistance Genes Lr46/Yr29, Theoretical and Applied Genetics. 112, 500-508.
  • Randhawa, H. S., Asif, M., Pozniak, C., Clarke, J. M., Graf, R. J., Fox, S. L., Humphreys, D. G., Knox, R. E., Depauw, R. M., Singh, A. K., Cuthbert, R. D., Hucl, P., & Spaner, D. (2013). Application of Molecular Markers to Wheat Breeding In Canada, Plant Breeding, 132(5), 458-471.
  • Çat, A., Tekin, M., Çatal, M., Akan K., & Akar, T. (2017). Wheat Stripe Rust and Breeding Studies for Resistance to The Disease. Mediterranean Agricultural Sciences, 30(2), 97-105.
  • Wellings, C. R. (2011). Global Status of Stripe Rust: A Review of Historical and Current Threats. Euphytica, 179(1), 129-141.
  • Akan, K., Mert, Z., Çetin, L., Salantur, A., Yazar, S., Dönmez, E., Özdemir, B., Yalçın, S., Özer, Y., & Wanyera, R. (2012). Bazı Buğday Genotiplerinin Lokal Sarı Pas ve Kara Pas Irklarıyla Ug99 Kara Pas Irkına Reaksiyonlarının Belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 21(1), 22-31.
  • Peng, F. Y., & Rong, R. C. (2017). Prediction and Analysis of Three Gene Families Related to Leaf Rust (Puccinia triticina) Resistance in Wheat (Triticum aestivum L.). BMC plant biology, 17(1), 1-17. Elyasi-Gomari S., & Lesovaya G. M. (2009). Harmfulness of Wheat Leaf Rust in The Eastern Part of Forest-Steppe of Ukraine. Archives of Phytopathology and Plant Protection, 42, 659-665.
  • Herrera-Foessel, S. A., Sing R.P., Huerta-Espino, J., Rosewarne, G. M., Periyannan, S. K., Viccars, L, Calvo-Salazar, V., Lan, C. X., & Lagudah, E. S. (2012). Lr68: A New Gene Conferring Slow Rusting Resistance to Leaf Rust in Wheat. Theoretical and Applied Genetics, 124, 1475-1486.
  • Ay, H., (2003). Çukurova Koşullarında Pas Hastalıklarının Bazı Ekmeklik Buğday Çeşitlerine Etkisi. Tarım Bilimleri Araştırma Dergisi, 6 (1), 50-55.
  • Khan, H., Bhardwaj, S. C., Gangwar, O. P., Prasad, P., Kashyap, P. L., Savadi, S., Kumar, S., & Rathore R., (2017). Identifying Some Additional Rust Resistance Genes in Indian Wheat Varieties Using Robust Markers. Cereal Research Communications, 45(4), 633-646.
  • Kiel, A., Weigt, D., Karpinska, M., Kurasiakpopowska, D., Niemann, J., Tomkowiak, A., Mikolajczyk, S., & Nawracala, J., (2020). An Analysis of the Functionality of Molecular Markers Related to The Lr19 Gene Conditioning Resistance to Wheat Leaf Rust. Zemdirbyste-Agriculture, 107(1), 63-70.
  • Waqar, A., Khattak, S. H., Begum, S., Rehman, T., Shehzad, A., Ajmal, W., Zia, S.S., Siddiqi I., & Ali, G. M. (2018). Stripe rust: A Review of the Disease, Yr Genes and Its Molecular Markers. Sarhad Journal of Agriculture, 34(1), 188-201.
  • Cobo, N., Wanjugi, H., Lagudah, E., & Dubcovsky, J. (2019). A High‐resolution Map of Wheat QYr. ucw‐1BL, an Adult Plant Stripe Rust Resistance Locus in the Same Chromosomal Region as Yr29. The plant genome, 12(1), 1-15.
  • Akcura, M., Akan, K., & Hocaoğlu, O. (2017). Biplot Analysis of Leaf Rust Resistance in Pure Lines Selected from Eastern Anatolian Bread Wheat Landraces of Turkey. Turkish Journal of Field Crops, 22(2), 227-234.
  • Wang, L., Ma, J., Zhou, R., Wang, X., & Jia, J. (2002). Molecular Tagging of the Yellow Rust Resistance Gene Yr10 in Common Wheat, PI178383 (Triticum aestivum L.). Euphytica, 124(1), 71-73.