AZ91, AS91 ve AM90 Magnezyum Alaşımlarının Aşınma ve Isıl Davranışları Üzerine Karşılaştırmalı Bir Çalışma

Bu makale, AZ91, AS91 ve AM90 (Mg-9Al-X) döküm magnezyum alaşımlarının aşınma direnci ve termal davranışları üzerine karşılaştırmalı bir çalışmadır. Bu alaşımlardaki üçüncü alaşım bileşenlerindeki değişimin (X; sırasıyla, 1 Zn, 1 Si, 0.5 Mn ve sabit 9 Al, % ağırlıkça) alaşımların aşınma direnci, ısıl özellikleri ve yoğunlukları üzerindeki etkileri karşılaştırmalı olarak analiz edilmiştir. Alaşımların mikroyapısında bulunan intermetalik fazların (AZ91'de Mg17Al12, AS91’de Mg2Si ve AM90’da Al8Mn5) sertlik, yoğunluk, aşınma direnci ve ısıl özellikler üzerinde etkili olduğu görülmüştür. Alaşımların termal özellikleri artan sıcaklıkla artmıştır (sıcaklık değişimi 25 °C'den 400 °C'e kadar). En yüksek termal yayılma AZ91 alaşımında, en düşük termal yayılma ise AM90 alaşımında ölçülmüştür. Öte yandan, en yüksek aşınma direnci AM90'da gözlenmiştir.

A Comparative Study on Wear and Thermal Behaviors of AZ91, AS91 and AM90 Magnesium Alloys

This paper is a comparative study on wear resistance and thermal behaviors of AZ91, AS91 and AM90 (Mg-9Al-X) cast magnesium alloys. The effects of the changing in third alloy components (X;1 Zn, 1 Si, 0.5 Mn, respectively, and constant 9 Al, wt.%) in these alloys on wear resistance, thermal properties and densities were comparatively analyzed. It was seen that intermetallic phases (Mg17Al12 in AZ91, Mg2Si in AS91 and Al8Mn5 in AM90) found in the microstructure of the alloys have an effect on hardness, densities, wear resistance and thermal properties. The thermal properties of the alloys were increase with increasing temperature (the temperature range from 25°C to 400°C). The highest thermal diffusivity were measured on AZ91 alloy and the lowest thermal diffusivity were measured on AM90 alloy. On the other hand, the highest wear resistance was observed in AM90.

___

  • [1] H.E. Friedrich, B.L. Mordike, (2006), Magnesium Technology. Springer-Verlag Berlin Heidelberg, Germany.
  • [2] D.S. Mehta, S.H. Masood, W.Q. Song, (2004), Journal of Materials Processing Technology, 155-156; 1526-1531.
  • [3] H. K. Tönshoff, B. Denkena, R J. Winkler, C. Podolsky, (2006), Machining, Magnesium Technology, Metallurgy, Design Data, Applications, (Ed. H. E. Friedrich and B. L.Mordike), Springer-Verlag Berlin Heidelberg, Germany, 398.
  • [4] A. Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, B.C. Pai, (2013), Creep behavior of AZ91 magnesium alloy, Procedia Engineering 55; 109-113, Procedia Engineering, 55, 109-113.
  • [5] C. Li-jie, M. Guo-rui, T. Chun-chong, (2012), Effects of isothermal process parameters on semisolid microstructure of Mg8%Al1%Si alloy Trans. Nonferrous Met. Soc. China, 22; 2364-2369, Trans. Nonferrous Met. Soc. China 22, 2364-2369.
  • [6] M.Unal, (2008), An investigation of casting properties of magnesium alloys, Gazi University, Institute of Science And Technology, Ph.D. Thesis.
  • [7] A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, B. Pai, C, (2008), Effect of combined addition of Si and Sb on the microstructure and creep properties of AZ91 magnesium alloy, Materials Science and Engineering A, 485; 86–91.
  • [8] L. Xin-lin, C. Yan-bin, W. Xiang, M.A. Guo-rui, (2010), Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys, Trans. Nonferrous Met. Soc. China 20; 393−396.
  • [9] A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, B.C. Pai, (2010), Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy, Materials Science and Engineering A, 527: 1395–1403.
  • [10] Akyüz, B., (2013), Influence of Al content on machinability of AZ series Mg alloys, Transactions of Nonferrous Metals Society of China, Volume 23, Issue 8, p.2243-2249.
  • [11] G.R. Ma, X.L. Li, L. Xiao, Q.F. Li, (2010), Effect of holding temperature on microstructure of an AS91 alloy during semisolid isothermal heat treatment, Journal of Alloys and Compounds, 496; 577–581.
  • [12] M.S. Dargusch, A.L. Bowles, K. Pettersen, P. Bakke, G.L. Dunlop, (2004), The Effect of Silicon Content on the Microstructure and Creep Behavior in Die-Cast Magnesium AS Alloys, Metalurgical and Materials Transactions A, Volume 35A; 1905.
  • [13] N. Tomac, K. Tønnesen, T. Mikac, (2008), Study of Influence of Aluminium Content on Machinability of Magnesium Alloys, Strojarstvo, 50 (6); 363 – 367.
  • [14] X.L. Zhao, Y. Tang, W.J. Deng, F.Y. Zhang, (2007), Effect of Tool Flank Wear on the Orthogonal Cutting Process, Key Engineering Materials, Vol. 329; 705-710.
  • [15] H.K. Tönshoff, J. Winkler, (1997), The influence of tool coatings in machining of magnesium, Surface and Coating Technology, 94-95; 610-616.
  • [16] H.K. Tönshoff, T. Friemuth, J. Winkler, C. Podolsky, (2006), Improving the Characteristics of Magnesium Workpieces by Burnishing Operations, Magnesium Alloys and their Applications, (Editedby K. U. Kainer) WILEY-VCH Verlag GmbH, Weinheim, Germany, 406.
  • [17] K. Liu, X.P. Li, S.Y. Liang, (2007), The mechanism of ductile chip formation in cutting of brittle materials, Int J Adv. Manuf. Technology, 33, 875-884.
  • [18] M. Ünal, (2014), Effects of solidification rate and Sb additions on microstructure and mechanical properties of as cast AM60 magnesium alloy, International Journal of Cast Metals Research, 27(2), 80-86.
  • [19] M. Faruk, A. Özdemir, K.U. Kainer, N. Hort, (2013), Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy, Transactions of Nonferrous Metals Society of China, 23(1), 66-72.
  • [20] T. Tsuchiya, K. Watanabe, K. Matsuda, T. Kawabata, K. Sakakibara, T. Yamaguchi, S. Saikawa, S. Ikeno, (2012), Effect of Al and Mn Contents on Microstructure in AM-Series Magnesium Alloys, Advanced Materials Research, 409, pp 379-382.
  • [21] A. Kiełbus, T. Rzychoń, R. Cibis, (2006), Microstructural Characterisation of AZ91 Magnesium Alloy, Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 135.
  • [22] Y. Ma, J. Zhang, M. Yang, (2009), Research on microstructure and alloy phases of AM50 magnesium alloy, Journal of Alloys and Compounds, 470(1), 515-521.
  • [23] Akyüz, B., (2014), Influence of Aluminum Content on Machinability of AS Series Cast Magnesium Alloys, Transactions of Nonferrous Metals Society of China, Volume 24, Issue 11, p.3452-3458.
  • [24] Akyüz, B., (2014), Comparison of the machinability and wear properties of magnesium alloys, The International Journal of Advanced Manufacturing Technology, Vol. 75 Issue 9-12, p1735-1742.
  • [25] Akyüz, B., (2016), Wear and machinability properties of AS series magnesium alloys, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230.4: 701-709.
  • [26] Akyüz, B., (2014), A study on wear and machinability of AZ series (AZ01-AZ91) cast magnesium alloys, Kovove Materially Metallic Materials, Volume 52, Issue 5, p.255-262,
  • [27] Akyüz, B., (2011), Machinability of Magnesium and Its Alloys, The Online Journal of Science and Technology (TOJSAT), Vol.1 Iss.3.
  • [28] Lee, S., Ham, H. J., Kwon, S. Y., Kim, S. W., Suh, C. M., (2013), Thermal conductivity of magnesium alloys in the temperature range from -125 °C to 400°C, International Journal of Thermophysics, 34(12), 2343-2350.
  • [29] Chunming, W., Yungui, C., Sufen, X., Wucheng, D., Xia, L., (2013), Thermal Conductivity and Mechanical Properties of as-Cast Mg-3Zn-(0.5∼ 3.5) Sn Alloys. Rare Metal Materials and Engineering, 42(10), 2019-2022.
  • [30] Rudajevová, A., & Lukáč, P., (2005), Comparison of the thermal properties of AM20 and AS21 magnesium alloys, Materials Science and Engineering: A, 397(1-2), 16-21.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ