3B Yazıcı ile Elde Edilen Mandibula Modellerinin Boyutsal Değerlendirilmesi

Amaç: Çalışmamızda bilgisayarlı tomografi görüntülerinden elde edilen 3B (üç boyutlu) mandibula modeli üretiminde kullanılan parametrelerden alt eşik değişimi ve katman yüksekliğinin değiştirilmesinin model boyutu üzerindeki etkisi araştırılmıştır. Metod: 35 yaşında sağlıklı bir hastanın maksillofasiyal BT görüntüleri kullanılarak tasarlanan ve basılan 3B mandibula modelinin segmentasyon işleminde eşik değeri sırasıyla 200,175 ve 150 Hounsfield birimi (HU) alınarak modeller oluşturuldu. Oluşturulan modellerin polilaktik asit (PLA) filament malzemeden baskısında 0.1, 0.2 ve 0.3 mm baskı katman yüksekliği kullanıldı. Elde edilen modeller yüksek çözünürlüklü tarayıcı ile taranarak STL formatında dataları bilgisayara aktarıldı. Taranan modeller referans model ile karşılaştırılarak aralarındaki fark belirlendi. Deney tasarımı olarak Taguchi L9 ortogonal dizini kullanıldı. Taguchi metodunda referans model ile meydana gelen fark için en küçük en iyi sinyal gürültü oranı denklemi kullanıldı. Sonuç: Deneyler sonucunda iki faktör arasında farka en çok etkiyi eşik değerinin yaptığı gözlemlenmiştir. Ayrıca 3B yazıcı ile elde edilen mandibula modelleri ile BT’den elde edilmiş olan anatomik model karşılaştırmasında modellerin birbirine yakın olduğu gözlemlenmiştir.

Dimensional Evaluation of The Mandible Models With Obtained 3D Printer

Objective: In our study, the effect of changing the lower threshold and layer height on the model size from the parameters used in the production of 3D (three-dimensional) mandible model obtained from computed tomography images was investigated. Method: We used maxillofacial CT images of a 35-year-old healthy patient in the segmentation and printing process of 3D mandible model. In the segmentation process, the threshold value was used 200,175 and 150 Hounsfield units (HU), printing layer height was 0.1, 0.2, and 0.3 mm in the printing of the created models of polylactic acid (PLA) filament material. The obtained models were scanned with a high precision scanner. Their data in STL format were transferred to the computer, then scanned models were compared with the reference model, and the difference between them was determined. The Taguchi L9 orthogonal index was used as the experimental design. In the Taguchi method, the smallest best signal to noise ratio equation was used for the difference with the reference model Conclusion: As a result of the experiments, it was observed that the threshold value had the most effect on the difference between the two factors. Also, it was observed that in the comparison of the mandible models obtained with a 3D printer and the anatomical model obtained from CT, the models were similar.

___

  • [1] Cohen, A., et al., Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2009. 108(5): p. 661-666.
  • [2] Odeh, M., et al., Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example. 3D printing in medicine, 2019. 5(1): p. 6.
  • [3] Petzold, R., H.-F. Zeilhofer, and W. Kalender, Rapid prototyping technology in medicine—basics and applications. Computerized Medical Imaging and Graphics, 1999. 23(5): p. 277-284.
  • [4] Matsumoto, J.S., et al., Three-dimensional physical modeling: applications and experience at Mayo Clinic. Radiographics, 2015. 35(7): p. 1989-2006.
  • [5] Bastawrous, S., et al., Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdominal Radiology, 2018. 43(10): p. 2809-2822.
  • [6] Ripley, B., et al., 3D printing from MRI data: harnessing strengths and minimizing weaknesses. Journal of Magnetic Resonance Imaging, 2017. 45(3): p. 635-645.
  • [7] Martelli, N., et al., Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery, 2016. 159(6): p. 1485-1500.
  • [8] Fasel, J.H., et al., A critical inventory of preoperative skull replicas. The Annals of The Royal College of Surgeons of England, 2013. 95(6): p. 401-404.
  • [9] Stumpel, L.J., Deformation of stereolithographically produced surgical guides: an observational case series report. Clinical implant dentistry and related research, 2012. 14(3): p. 442-453.
  • [10] Ogden, K., et al. Dimensional accuracy of 3D printed vertebra. in Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling. 2014. International Society for Optics and Photonics.
  • [11] Brouwers, L., et al., Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study. European Journal of Trauma and Emergency Surgery, 2019. 45(6): p. 1013-1020.
  • [12] Kaye, R., et al., Three dimensional printing: A review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 2016. 89: p. 145-148.
  • [13] Aimar, A., A. Palermo, and B. Innocenti, The role of 3D printing in medical applications: a state of the art. Journal of healthcare engineering, 2019. 2019.
  • [14] Silva, D.N., et al., Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. Journal of cranio-maxillofacial surgery, 2008. 36(8): p. 443-449.
  • [15] Ibrahim, D., et al., Dimensional error of selective laser sintering, three-dimensional printing and PolyJet™ models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillofacial Surgery, 2009. 37(3): p. 167-173.
  • [16] Kim, S.-Y., et al., Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 2018. 153(1): p. 144-153.
  • [17] George, E., et al., Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics, 2017. 37(5): p. 1424-1450.