Modifiye edilmiş ahşabın hızlandırılmış yaşlandırması: Isıl işlemli örnekler ile asetillendirilmiş örneklerin kıyaslanması

Bu çalışmada amaç, ısıl işlemli örnekler ile asetillendirilmiş örneklerin toprak üstü kullanım yerlerinde maruz kalabileceği UV ışığı başta olmak üzere dış ortamın bozundurucu faktörlerine karşı dayanıklılığının hızlandırılmış yaşlandırma testi ile belirlenmesidir. Bu amaçla ısıl işlemli çam ve dişbudak örnekleri ile asetillendirilmiş çam odunu örnekleri toplam 400 saat boyunca değişik döngülerde UV ışığı ve suya maruz bırakılmıştır. Örneklerin teste başladıktan 100, 200 ve 400 saat sonra renk ve yüzey kimyası (ATR-FTIR) analizi ile makroskopik açıdan değerlendirilmesi yapılmıştır. Sonuçlarda, ısıl işlemli örneklerin yaşlandırma test süresi uzadıkça koyu olan başlangıç renklerinin açılmaya başladığı ve toplam renk değişimi (∆E*) değerlerinin giderek arttığı bulunmuştur. Buna karşın asetillendirilmiş örneklerde ilk 100 saat sonrasındaki renk değişimi test süresince dikkate değer ölçüde değişmemiş ve test boyunca neredeyse stabil olmuştur. Asetillendirilmiş örneklerin rengi hafif açılma eğilimindedir. Kontrol çam ve dişbudak örneklerinde toplam renk değişimi test süresince hafif bir artış eğiliminde olup, en büyük değişim ilk 100 saatlik test süresinde gerçekleşmiştir. Bu örneklerin rengi test süresince koyulaşma eğilimindedir. 100 saat sonrasında kontrol çam ve ısıl işlemli dişbudak örneklerinde çatlaklar gözlenmiş ve test süresince bu çatlaklar giderek artmış ve derinlemiştir. Yüzey kimyası analizleri, örneklerdeki renk değişimini desteklemekle birlikte örneklerin lignininde yaşlanmanın ilk aşasından itibaren bozunmalar olduğunu göstermiştir. Hızlandırılmış yaşlandırma testinin bozundurucu faktörlerine karşı, asetillendirilmiş örnekler ısıl işlemli örneklerden, ısıl işlemli örnekler ise kontrol örneklerinden daha iyi bir performans sergilemiştir.

Accelerated weathering of modified wood: Comparison of heat treated samples with acetylated samples

The aim of this study is to determine the accelerated weathering resistance of heat-treated samples and acetylated samples to the weathering factors of the outdoors, especially UV light. For this purpose, heat-treated pine and ash samples and acetylated pine wood samples were exposed to UV light and water at different cycles for a total of 400 hours. Color measurements, surface chemistry (ATR-FTIR), and macroscopic evaluation of the samples were performed after 100, 200, and 400 hours of the test period. In the results, it was found that as the weathering test period of the heat-treated samples increased, the dark initial color began to lighten, and the total color change (∆E*) values gradually increased. In the case of acetylated wood, the color change after the first 100 hours did not change remarkably during the test and was almost stable throughout the test. Acetylated samples tend to lighten slightly. Total color change in control pine and ash samples tended to increase slightly during the test, with the greatest change occurring during the first 100 hours of the test period. The color of these samples tends to darken during testing. After 100 hours, cracks were observed in the control pine and heat-treated ash samples, and these cracks gradually increased and deepened throughout the test. Surface chemistry analyses supported the color change in the samples, and showed that the lignin of the samples degraded from the first stage of weathering period. Acetylated samples performed better than heat-treated samples, and heat-treated samples performed better than control samples against the degrading factors of the accelerated weathering test.

___

  • Anish, M. C., Giridhar, B. N., Nair, S., Anantha, N. S. ve Pandey, K. K. (2022). Influences of extractives and thermal modification on the UV resistance of Albizia lebbeck wood. Wood Material Science ve Engineering, 1-9.
  • ASTM D2244-21, Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates.
  • Ayadi, N., Lejeune, F., Charrier, F., Charrier, B. ve Merlin, A. (2003). Color stability of heat-treated wood during artificial weathering. Holz als Roh-und Werkstoff, 61(3), 221-226.
  • Aydemir, D., Alsan, M., Can, A., Altuntas, E. ve Sivrikaya, H. (2019). Accelerated weathering and decay resistance of heat-treated wood reinforced polypropylene composites. Drvna industrija, 70(3), 279-285.
  • Chang, S. T. ve Chang, H. T. (2001). Comparisons of the photostability of esterified wood. Polymer Degradation and Stability, 71(2), 261-266.
  • Derbyshire, H. ve Miller, E. R. (1981). The photodegradation of wood during solar irradiation. Part 1: Effects on the structural integrity of thin wood strips. Holz als Roh- und Werkstoff, 39, 341-350.
  • Dunningham, E. A., Plackett, D. V. ve Singh, A. P. (1992). Weathering of chemically modified wood. Holz als Roh-und Werkstoff, 50(11), 429-432.
  • Evans, P. D. (2009). Review of the weathering and photostability of modified wood. Wood Material Science and Engineering, 4(1-2), 2-13.
  • Evans, P. D., Thay, P. D. ve Schmalzl, K. J. (1996). Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Science ve Technology, 30, 411-422.
  • Evans, P. D., Wallis, A. F. A. ve Owen, N. L. (2000). Weathering of chemically modified wood surfaces. Wood Science and Technology, 34(2), 151-165.
  • Feist, W. C. (1983). Weathering and protection of wood. Proceedings seventy-ninth annual meeting of the American wood-preservers' association, 79,195–205
  • Feist, W. C. ve Hon, D. N.S. (1984). Chemistry of weathering and protection. In R. M. Rowell (Ed.), Chemistry of solid wood (pp. 401454). Washington DC: ACS.
  • Feist, W. C. ve Sell, J. (1987). Weathering behavior of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood ve Fiber Science, 19, 183-195.
  • Feist, W. C., Rowell, R. M. ve Ellis, W. D. (1991). Moisture sorption and accelerated weathering of acetylated and methacrylated aspen. Wood ve Fiber Science, 23, 128-136.
  • Gürgen, A. (2021). Multi-fonksiyonel bazı bileşiklerin odun korumada sinerjik etkilerinin belirlenmesi ve çok amaçlı optimizasyonu (Doktora tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Hill, C. A. (2007). Wood modification: chemical, thermal and other processes. John Wiley & Sons.
  • Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y. Ve Pichette, A. (2012). A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering. Applied Surface Science, 258(14), 5360-5369.
  • Hunter Associates Laboratory, CIEL* a*b* color scale. 2008. Applications note- Insight on Color, HenterLab, 8(9), 1-4.
  • Kalnins, M. A. (1984). Photochemical degradation of acetylated, methylated, phenylhydrazine-modified and ACC-treated wood. Journal of Applied Polymer Science, 29, 105-115.
  • Karamanoğlu, M. ve Akyildiz, M. H. (2013). Colour, gloss and hardness properties of heat treated wood exposed to accelerated weathering. Pro Ligno, 9(4), 729-738.
  • Mitsui, K. (2010). Acetylation of wood causes photobleaching. Journal of Photochemistry and Photobiology B: Biology, 101(3), 210-214.
  • Mitsui, K. ve Tolvaj, L. (2005). Color changes in acetylated wood by the combined treatment of light and heat. Holz als Roh-und Werkstoff, 63(5), 392-393.
  • Montanari, C., Olsén, P. ve Berglund, L. A. (2021). Sustainable wood nanotechnologies for wood composites processed by in-situ polymerization. Frontiers in Chemistry, 9, 483.
  • Müller U., Rätzsch M., Schwanninger M., Steiner M., Zöbl H. (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B: Biology 69, 97–105.
  • Nuopponen, M., Wikberg, H., Vuorinen, T., Maunu, S. L., Ja¨msa¨, S. ve Viitaniemi, P. (2004). Heat-treated softwood exposed to weathering. Journal of Applied Polymer Science, 91, 2128-2134.
  • Nzokou, P., Kamdem, P.D. ve Temiz, A. (2011). Effect of accelerated weathering on discoloration and roughness of finished ash wood surfaces in comparison with red oak and hard maple. Progress in Organic Coatings, 71, 350–354.
  • Ormondroyd, G., Spear, M. ve Curling, S. (2015). Modified wood: review of efficacy and service life testing. Proceedings of the Institution of Civil Engineers-Construction Materials, 168(4), 187-203.
  • Pandey, K. K. (2005). A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer degradation and stability, 87(2), 375-379.
  • Plackett, D. V., Dunningham, E. A. ve Singh, A. P. (1992). Weathering of chemically modified wood. Accelerated weathering of acetylated radiata pine. Holz als Roh- und Werkstoff, 50, 135-140.
  • Sandberg, D., Kutnar, A. ve Mantanis, G. (2017). Wood modification technologies-a review. Iforest-Biogeosciences and forestry, 10(6), 895.
  • Tarkow, H., Stamm, A. J. ve Erickson, E. C. O. (1946). Acetylated wood. US Forest Products Laboratory Report, 1593, 115.
  • Temiz, A., Terziev, N., Jacobsen, B. ve Eikenes, M. (2006). Weathering, water absorption, and durability of silicon, acetylated, and heat‐treated wood. Journal of Applied Polymer Science, 102(5), 4506-4513.
  • Yıldız, S., Tomak, E. D., Yıldız, U. C. ve Ustaomer, D. (2013). Effect of artificial weathering on the properties of heat treated wood. Polymer degradation and stability, 98(8), 1419-1427.
  • Yıldız, S., Yıldız, U. C. ve Tomak, E. D. (2011). The effects of natural weathering on the properties of heat-treated alder wood. BioResources, 6(3), 2504-2521.